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Garside groups
Seminal Examples

Example

Let M = (ms,t)s,t∈S be a Coxeter matrix.

A =

〈

S | sts . . .
︸ ︷︷ ︸

ms,t

= tst . . .
︸ ︷︷ ︸

ms,t

s 6= t

〉

The group A is called the Artin-Tits group associated with M .
 The submonoid A+ generated by S as the same presentation.
 The associated Coxeter group is W = A/s2=1.

If S = {s1, · · · ,sn} with msi ,sj = 3 for |i − j| = 1 and msi ,sj = 2 for |i − j|> 1, the
associated Artin-Tits group is the braid group Bn+1 on n + 1 strands.
W = Sn+1.

∆n = (σ1 · · ·σn−1σn) · · · (σ1σ2)σ1
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Garside groups
Abstract definition

Definition
(i) A monoid is said to be a locally Garside monoid if

(a) it is cancellative and Noetherian ;

(b) any two elements have a common multiple for left-divisibility if and only if
they have a least common multiple for left-divisibility ;

(c) any two elements have a common multiple for right-divisibility if and only if
they have a least common multiple for right-divisibility.

(ii) A Garside element of a locally Garside monoid is a balanced element
whose set of factors generates the whole monoid. When such an element
exists, we say that the monoid is a Garside monoid.
(iii) A (locally) Garside group G(M) is the enveloping group of a (locally)
Garside monoid M .
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Garside groups
parabolic subgroups of Artin-Tits groups

Example

Let M = (ms,t)s,t∈S be a Coxeter matrix.

A =

〈

S | sts . . .
︸ ︷︷ ︸

ms,t

= tst . . .
︸ ︷︷ ︸

ms,t

s 6= t

〉

 the associated Garside monoid is A+.

Theorem

Let T ⊆ S and N = (ms,t)s,t∈T

AT := 〈T 〉A ≃

〈

T | sts . . .
︸ ︷︷ ︸

ms,t

= tst . . .
︸ ︷︷ ︸

ms,t

s 6= t

〉

.

The subgroup AT is called a standard parabolic subgroup of A.
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Garside groups
parabolic subgroups of Artin-Tits groups

 AT is an Artin-Tits group ;

 The Garside structures of A and AT are compatibles ;

 A+∩AT = A+
T ;

 AT ∩AU = AT∩U ;

 The family of parabolic subgroups allows to solve the word problem in A
(for some cases).

 The family of parabolic subgroups allows to build a finite dimensional
CAT(0) complex on which A acts (for some cases).

 The family of parabolic subgroups allows to prove the K (π,1) conjecture
for Coxeter groups (for some cases).
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Garside groups
Two questions and a remark

Question : Is there a natural notion of parabolic subgroup in the framework of
Garside groups ? Can we define a standard parabolic subgroup as any
subgroup generated by a subset of atoms ?
Question : Is there a natural notion of Coxeter-like associated group in the
framework of Garside groups ?
Remark : General Artin-Tits groups are badly understood (not even a solution
to the word problem). So, one may wonder :

Why is it interesting to consider locally Garside groups which are more
general ?

 A better abstract understanding can help to understand Artin-Tits groups.
 Natural objects of study can be equiped with a Garside structure.
 Garside groups are well-understood, as spherical-type Artin-Tits groups.
 Some Artin-Tits groups are (locally) Garside groups and can be understood
in this way (word problem...).
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Why is it interesting to consider locally Garside groups which are more
general ?

 A better abstract understanding can help to understand Artin-Tits groups.
 Natural objects of study can be equiped with a Garside structure.
 Garside groups are well-understood, as spherical-type Artin-Tits groups.
 Some Artin-Tits groups are (locally) Garside groups and can be understood
in this way (word problem...).
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Garside groups
Parabolic subgroups of Garside groups

 First step : What about Garside groups ?

Example

Consider M = 〈a1,a2,a3,a4 | a1a2 = a2a3 = a3a4 = a4a1〉. The subgroup G1,3

is a free group with base {a1,a3}, and G1,3 ∩M is the free monoid with
base {a1,a3}.

G1,3 ∩G2,4 = 〈a−1
3 a1〉.

Lemma
If M is an Artin-Tits monoid of spherical type, then its classical parabolic
submonoids are in one-to-one correspondance with the balanced elements
that belongs to Div(∆).
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Garside groups
Parabolic subgroups of Garside groups

Definition (G)

Let M be a Garside monoid and ∆ be a Garside element. If δ ∈ Div(∆)
balanced, then Mδ is a parabolic submonoid with δ as a Garside element if and
only if

Div(δ) = Div(∆)∩Mδ.

Definition (G-Paris)

Let M be a monoid and N be a submonoid. We say that N is special when it is
closed by factors, that is abc ∈ N =⇒ a,b,c ∈ N.

Lemma
Let M be a locally Garside monoid and N be a special submonoid. Then N is a
locally Garside monoid, and a lower sub-semilattice.
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Garside groups
parabolic subgroups

Example

Consider M = 〈a1,a2,a3,a4 | a1a2 = a2a3 = a3a4 = a4a1〉. The
submonoid G1,3 ∩M is special submonoid of M but G1,3 ∩G2,4 = 〈a−1

3 a1〉.

Definition (G-Paris)

Let M be a Garside monoid and G(M) be its associated Garside group.

(i) A submonoid of M is said to be parabolic if it is special, and closed by left
lcm and by right lcm. A parabolic submonoid is of spherical type if it has a
Garside element.

(ii) A subgroup of G(M) is standard parabolic if it is generated by the
image ι(N) of a parabolic submonoid N of M .

(iii) A subgroup is parabolic if it is conjugate to a standard parabolic subgroup.
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Garside groups
parabolic subgroups

Example

If M is an Artin-Tits monoid, then its classical parabolic submonoids are the
parabolic submonoids defined by the associated locally Garside structure.

Theorem (G-Paris)

Let M be a Garside monoid.
Every parabolic submonoid N of M is of spherical type. Moreover, there exists
a Garside element ∆N of N such that

Div(∆N) = Div(∆)∩N.
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Garside groups
Parabolic subgroups

Conjecture (G-Paris)

For every locally Garside monoid, Properties (P1), (P2), (P3) and (P4) hold.

(P1) The canonical morphism ι : M → G(M) is into.

(P2) The group G(M) is torsion free.

(P3) If N is a parabolic submonoid, then the associated standard parabolic
subgroup is isomorphic to G(N). Moreover, G(N)∩M = N in G(M).

(P4) If N and N ′ are parabolic submonoids then N ∩N ′ is parabolic and
G(N ∩N ′) = G(N)∩G(N ′).

Theorem (G)

For every Garside groups, Properties (P3) and (P4) hold.
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Garside groups
Application 1 : FC type Garside groups

Theorem (G-Paris)

Let M1 and M2 be two locally Garside monoids and N be a common parabolic
submonoid. Then
(a) M1 ∗N M2 is a locally Garside monoid.
(b) If the morphisms G(N) → G(M1) and G(N) → G(M2) are into, then
G(M1 ∗N M2) = G(M1)∗G(N) G(M2).

Definition (G-Paris)

The family of locally Garside groups of FC type is the smallest family of locally
Garside groups that contains Garside groups and that is closed by
amalgamation above a parabolic subgroup.

Theorem (G-Paris)

Every locally Garside group of FC type verifies properties (P1)—(P4).
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Garside groups
Application 1 : FC type Garside groups

Example

Consider M = 














1 3 2 · · · 2 3 3
3 1 3 2 · · · 2 2
2 3 1 3 2 · · · 2
...

. . .
. . .

. . .
. . .

. . . 2
...

2 · · · 2 3 1 3 2 2
2 · · · 2 3 1 3 3
3 2 · · · 2 3 1 ∞
3 2 · · · 2 3 ∞ 1
















 The associated Artin-Tits group is a locally Garside group of FC type.
 One obtains a solution for the word probem.

Eddy Godelle (Univ. Caen) Algebraic generalization of braid groups Caen  avril  15 / 35



Garside groups
Application 1 : FC type Garside groups

Example

Consider M = 














1 3 2 · · · 2 3 3
3 1 3 2 · · · 2 2
2 3 1 3 2 · · · 2
...

. . .
. . .

. . .
. . .

. . . 2
...

2 · · · 2 3 1 3 2 2
2 · · · 2 3 1 3 3
3 2 · · · 2 3 1 ∞
3 2 · · · 2 3 ∞ 1
















 The associated Artin-Tits group is a locally Garside group of FC type.
 One obtains a solution for the word probem.

Eddy Godelle (Univ. Caen) Algebraic generalization of braid groups Caen  avril  15 / 35



Garside groups and QYBE
Yang-Baxter equation

Definition
1 We fix a finite dimensional vector space V over a field K. The Quantum

Yang-Baxter Equation on V is the equation

R12R13R23 = R23R13R12

of linear transformations on V ⊗V ⊗V where the indeterminate is a linear
transformation R : V ⊗V → V ⊗V , and Rij means R acting on the i th and
j th components.

2 A set-theoretical solution of this equation is a pair (X ,S) such that X is a
basis for V , and S : X ×X → X ×X is a bijective map that induces a
solution R of the QYBE.

 the two main issues in the theory are (a) the construction of explicite
solutions of the QYBE and (b) the classification of the solutions.
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Garside groups and QYBE
nondegenerated ans symmetric solutions

Definition

Let (X ,S) be a set theoretical solution of the Yang-Baxter equation. We set
S(x ,y) = (gx(y), fy (x)).

(i) (X ,S) is nondegenerate and symmetric if
(a) the maps fx and gx are bijections
(b) S ◦S = IdX .
(c) S12S23S12 = S23S12S23.

(ii) A subset Y ⊆ X is an invariant subset if S(Y ×Y ) = Y ×Y .

(iii) (X ,S) is said to be decomposable if X is a union of two nonempty disjoint
invariant subsets.

Fact : (a) If Y is an invariant subset, then (Y ,S|Y×Y ) is a set theoretical
solution of the Yang-Baxter equation.
(b) If Y is an invariant subset, X \Y may not be invariant.
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(ii) A subset Y ⊆ X is an invariant subset if S(Y ×Y ) = Y ×Y .

(iii) (X ,S) is said to be decomposable if X is a union of two nonempty disjoint
invariant subsets.

Fact : (a) If Y is an invariant subset, then (Y ,S|Y×Y ) is a set theoretical
solution of the Yang-Baxter equation.
(b) If Y is an invariant subset, X \Y may not be invariant.
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Garside groups and QYBE
structure groups

Definition

Assume (X ,S) is non-degenerate and symmetric. The structure group of
(X ,S) is defined to be the group G(X ,S) with the following group presentation :

〈X | xy = zt when S(x ,y) = (z, t)〉

Theorem (Chouraqui)

Assume (X ,S) is non-degenerate and symmetric.

The structure group G(X ,S) is a Garside group.

The associated Garside monoid has the same presentation, considered as a
monoid presentation.
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Garside groups and QYBE
invariant subset and parabolic subgroups

Theorem (Chouraqui,G)

For Y ⊆ X, denote by GY the subgroup of G(X ,S) generated by Y .The map

Y 7→ GY

induces a one-to-one correspondance :

invariant subsets of (X ,S)
↔

standard parabolic subgroups of G(X ,S).
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Garside groups and QYBE
foldable solution

 John Crisp has introduced the notion of a folding of a Coxeter graph (ie
Coxeter matrix) and of an LCM-homomorphism.These notion can be used to
prove that some subgroups of an Artin-Tits group are Artin-Tits groups.
 (G) The notion of a subgroup obtained as the image of an
LCM-homomorphism can be extended to the framework of Garside groups.
 The notion of folding can be translated to the context of set theoretical
solutions of the Yang-Baxter equation and should be seen as a generalization
of the notion of decomposable solution :

Theorem (Chouraqui,G)

Let X be a finite set, and (X ,S) be a non-degenerate, symmetric set-theoretical
solution of the QYBE. The pair (X ,S) is decomposable if and only if it has a
strong folding (X ′,S′) which a is trivial solution and such that #X ′ = 2.
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Garside groups and QYBE
foldable solutions : example

Consider the group G(X ,S) where X = {x1,x2,x3,x4} and the defining
relations are

x2
1 = x2

2 ; x1x2 = x3x4; x1x3 = x4x2;
x2

3 = x2
4 ; x2x4 = x3x1; x2x1 = x4x3.

 The group G(X ,S) has no proper standard parabolic subgroup.
 The solution (X ,S) is not decomposable.
 Set G(X ′,S′) = 〈x ,y | x2 = y2〉. Then,

(X ′,S′) is a folding of the solution (X ,S).

Here X ′ = {x = x2
1 , y = x2

3}, and the sets {x1,x2} and {x3,x4} generate
Garside subgroups that are not parabolic.
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Renner monoids
Algebraic monoids

The theory of Algebraic monoids has been mainly developped by M. Pucha,
L. Renner and L. Solomon. As remarked by the latter1

“Their work has been more or less ignored by those who might enjoy it and
profit from it[...] This subjet has a marketing problem. My estimate, based on

some minimal evidence, is that those who do algebraic groups are sympathetic
but uninterested, those who do algebraic combinatorics do not know that the

subject exists, and those who do semigroups are put off by prerequisites which
seem formidable.”

1Louis Solomon, An introduction to reductive monoids. Semigroups, Formal languages and
groups, 295-352, J. Fountain (eds) Kluwer Acad. Publ., Dordrecht, 1995
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Renner monoids
Algebraic monoids

Definition
Let K be an algebraic closed field. An algebraic monoid M is a submonoid (for
product) of some Mn(K) that is closed for the topology of Zariski. A reductive
monoid is a irreducible algebraic monoid whose unit group is a reductive group.

Definition
Let M be a reductive monoid. Let T be a maximal torus of G. Then, the Renner
monoid of M is the monoid

R = NG(T )/T

Example

M = Mn(K) ; G = GLn(K) ; T =





∗
∗

∗



 The monoid R is the Rook

monoid RSn that is the monoid of partial permutations on n letters.
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Renner monoids
Renner monoids and Weyl groups

Lemma
R is an finite factorizable inverse monoid. Its unit group is the Weyl group W of
G. In particular we have

R = E(R) ·W

where E(R) = {e ∈ R | e2 = e}. Furthermore, E(R) = E(T ) is a commutative
monoid.

Remarks : (1) If R = RSn then, W = Sn, the permutation group.
(2) Weyl groups are Coxeter groups. They are classified and have presentation

of the following type :

〈

S | s2 = 1; sts . . .
︸ ︷︷ ︸

ms,t

= tst . . .
︸ ︷︷ ︸

ms,t

s 6= t

〉

.

Example

Sn =
〈
s1, · · ·sn−1 | s2

i = 1 ; sisj = sjsi |i − j| > 1 ; sisi+1si = si+1sisi+1

〉
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Weyl groups
Artin-Tits groups and generic Hecke algebra

Definition
One can associate to each Coxeter group W an Artin-Tits group A by removing
the torsion relation from the presentation. A = 〈S | sts . . .

︸ ︷︷ ︸

ms,t

= tst . . .
︸ ︷︷ ︸

ms,t

s 6= t〉

Example

If W = Sn, then A is the braid group Bn on n strings.

Definition

One can associate to each Coxeter group W a generic Hecke algebra H (W )

over Z[q,q−1] so that

A →֒ Z[q,q−1][A]
| ↓↓
| H (W )
↓↓ ↓↓
W →֒ Z[q,q−1][W ]
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Weyl groups
Iwahori-Hecke algebra

Assume K = Fq and set ε = 1
|Bq |

∑b∈Bq
b in C[Gq]. The Iwahori-Hecke

algebra H (Gq ,Bq) is defined by

H (Gq ,Bq) = εC[Gq]ε.

H (Gq ,Bq) is isomorphic to ⊕w∈W Cw as a C vector space. Moreover,

Theorem

The Iwahori-Hecke algebra H (Gq,Bq) is isomorphic to Hq(W )⊗Z C, where
Hq(W ) is the specialisation at q of the generic Hecke algebra H (W ) of the we
group W.

Eddy Godelle (Univ. Caen) Algebraic generalization of braid groups Caen  avril  26 / 35



Weyl groups
Iwahori-Hecke algebra

Assume K = Fq and set ε = 1
|Bq |

∑b∈Bq
b in C[Gq]. The Iwahori-Hecke

algebra H (Gq ,Bq) is defined by

H (Gq ,Bq) = εC[Gq]ε.

H (Gq ,Bq) is isomorphic to ⊕w∈W Cw as a C vector space. Moreover,

Theorem

The Iwahori-Hecke algebra H (Gq,Bq) is isomorphic to Hq(W )⊗Z C, where
Hq(W ) is the specialisation at q of the generic Hecke algebra H (W ) of the we
group W.

Eddy Godelle (Univ. Caen) Algebraic generalization of braid groups Caen  avril  26 / 35



Weyl groups
Iwahori-Hecke algebra

Assume K = Fq and set ε = 1
|Bq |

∑b∈Bq
b in C[Gq]. The Iwahori-Hecke

algebra H (Gq ,Bq) is defined by

H (Gq ,Bq) = εC[Gq]ε.

H (Gq ,Bq) is isomorphic to ⊕w∈W Cw as a C vector space. Moreover,

Theorem

The Iwahori-Hecke algebra H (Gq,Bq) is isomorphic to Hq(W )⊗Z C, where
Hq(W ) is the specialisation at q of the generic Hecke algebra H (W ) of the we
group W.

Eddy Godelle (Univ. Caen) Algebraic generalization of braid groups Caen  avril  26 / 35



Renner monoids
Generic Hecke algebra and Iwahori-Hecke algebra

Assume K = Fq and set ε = 1
|Bq |

∑b∈Bq
b in C[Mq]. The monoid Mq is called a

finite reductive monoid. The Iwahori-Hecke algebra H (Mq ,Bq) is εC[Mq]ε. It
is isomorphic to ⊕r∈RCr as a C vector space.
Questions :

• (L. Solomon) Does there exist a generic Hecke algebra H (R) so that

H (Mq,Bq) =Hq(R)⊗Z C

• Does there exist a group RA so that the following diagram is

commutative ?

RA →֒ Z[q,q−1][RA]
| ↓↓
| H (R)
↓↓ ↓↓
R →֒ Z[q,q−1][R]
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Weyl groups
Weyl groups and length function

W is a Coxeter group, and for w ∈ W we have ℓS(w) = inf{k | w = s1 · · ·sk}

Lemma

A =
〈
w ,w ∈ W | w w ′ = ww ′ when ℓS(w)+ ℓS(w ′) = ℓS(ww ′)

〉

H (W )=

〈

Tw ,w ∈ W |
Tw Tw ′ = Tww ′ ℓS(w)+ ℓS(w ′) = ℓS(ww ′)
T 2

s = (q −1)Ts + qT1 s ∈ S

〉

BsBwB =

{
BswB if ℓ(sw) = ℓ(w)+ 1;
BswB∪BwB if ℓ(sw) = ℓ(w)−1.

 Questions :

(a) Is there good presentations for Renner monoids ?

(b) Does there exists a good length function on Renner monoids that do the
job ?
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Presentation of Renner monoids
Generating set

R = E(R) ·W .

⇒ If Λ is a transversal of E(R) under the action of W , then S∪Λ is a
generating set of R.

Theorem
Let B be a Borel subgroup of the algebraic group G, and let T be a maximal
torus in B. Then,

Λ(B) = {e ∈ E(R) | ∀b ∈ B, ebe = eb}

is a transversal of E(R) under the action of W.
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Presentation of Renner monoids
Generating set of the Rook monoid

Example

M = Mn(K) ; G = GLn(K) ; B =





∗ ∗ ∗
∗ ∗

∗



 ; T =





∗
∗

∗



.

One has R = RSn and

Λ(B) =

{

e0 = (0),e1 =

(
I1 0
0 0

)

,e2 =

(
I2 0
0 0

)

, . . . ,

en−1 =

(
In−1 0

0 0

)

,en = Idn

}

S = {s1, · · · ,sn−1} with si =







Ii−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 In−(i+1)







.
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Presentation of Renner monoids
Defining relations of the Rook monoid

Lemma (G)

Let Ω = {e0, . . . ,en−1,s1, . . . ,sn−1}. Then, the Rook monoid has a monoid
presentation whose generating set is Ω and whose defining relations are :

braid relations :







s2
i = 1

sisj = sjsi |i − j| ≥ 2
sisi+1si = si+1sisi+1

relations in E(RSn) : eiej = ejei = emin(i,j)

Sn and E(RSn) :







ejsi = siej i < j
ejsi = siej = ej j < i
eisiei = ei−1
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Presentation of Renner monoids

Theorem (G)

Let R be a Renner monoid with genereting set S∪Λ◦ Then the following
relations provided a monoid presentation of R.

(COX1) s2 = 1, s ∈ S ;
(COX2) sts · · ·

︸ ︷︷ ︸

ms,t termes

= tst · · ·
︸ ︷︷ ︸

ms,t termes

s, t ∈ S ;

(REN) se = es, e ∈ Λ◦, s ∈ λ⋆(e) ;
(REN2) se = es = e, e ∈ Λ◦, s ∈ λ⋆(e) ;
(REN3) ewf = e∧w f , e, f ∈ Λ◦, w ∈ Red(e, f ).

where w is an arbitrary representative word of w.

This result holds for
 Renner monoids of reductive monoids and finite reductive monoids.
 Renner monoids of finite monoids of Lie type.
 Renner monoids of face monoids.
 Generalized Renner monoids.
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This result holds for
 Renner monoids of reductive monoids and finite reductive monoids.
 Renner monoids of finite monoids of Lie type.
 Renner monoids of face monoids.
 Generalized Renner monoids.
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Length on the rook monoids
Definition and first properties

Definition (G)

(i) We set ℓ(si) = 1 and ℓ(ej ) = 0. For a word ρ = x1 · · ·xk with x1, . . . ,xk

in S∪Λ◦, we set

ℓ(ρ) =
k

∑
i=1

ℓ(xi)

(ii) For r in R, we set : ℓ(r) = min{ℓ(ρ),ρ ∈ (S∪Λ◦)
∗ | ρ = r}.

Lemma

(i) ℓ|W = ℓS ; if ℓ(w) = 0 then w ∈ Λ.
(ii) If s ∈ S then |ℓ(sw)− ℓ(w)| ≤ 1.
(iii) ℓ(ww ′) ≤ ℓ(w)+ ℓ(w ′).
(iv) If r = w1ew2 is the normal decomposition of r (e ∈ Λ, w1,w2 ∈ W) then

ℓ(r) = ℓ(w1)+ ℓ(w2).
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Length on the rook monoid
Main properties

Theorem (G)

Let r be in R and r = w1ew2 its normal decomposition of r . Then,

ℓ(r) = dim(Bw1eB)−dim(Bew2B).

BsBrB =







BrB if ℓ(sr) = ℓ(r);
BsrB if ℓ(sr) = ℓ(r)+ 1;
BsrB∪BrB if ℓ(sr) = ℓ(r)−1.
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Iwahori-Hecke algebra

Theorem (Solomon/Pennel-Putcha-Renner, G)

Let M be a finite reductive monoid over Fq. The Iwahori-Hecke
algebra H (M,B) has the following C-algebra presentation :

(HEC1) T 2
s = (q −1)Ts + qT1, s ∈ S ;

(HEC2) TsTtTs · · ·
︸ ︷︷ ︸

ms,t termes

= TtTsTt · · ·
︸ ︷︷ ︸

ms,t termes

, s, t ∈ S ;

(HEC3) TsTe = TeTs, e ∈ Λ◦, s ∈ λ⋆(e) ;
(HEC4) TsTe = TeTs = qTe, e ∈ Λ◦, s ∈ λ⋆(e) ;
(HEC5) TeTwTf = qℓ(w)Te∧wf , e, f ∈ Λ◦, w ∈ Red(e, f ).

Theorem (G)

To each generalized Renner monoid R, one can associate a generic Hecke
algebra H (R) that is a ring over the free Z[q]-module with base R.
 We obtain a positive answer to Solomon question :
H (Mq ,Bq) =Hq(R)⊗Z C.
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