Garside Categories

E. Godelle

Amiens 2022 - GDR Tresses

Garside categories

- Lecture 1 : Do Garside categories exist and why should we care about it?
- Lecture 2 : Working with Garside families in categories and groupoid.
- Lecture 3 : Existence of Garside families - Quasi-Garside category.

References

The lecture is based on the reference Book: Foundations of Garside Theory, P. Dehornoy,
F. Digne, E. Godelle D. Krammer et J. Michel, Europ. Math. Soc. Tracts in Mathematics 22.
(2) The book does not contain any reference to a notion of a Garside category.
(3) Only small categories are considered, and are meanly seen as a way to encode a partial product between arrows.

Lecture 1 :

Do Garside categories exist and why should we care about it?

(1) Introduction and motivations to Garside framework
(2) Why consider category/groupoid and not just monoid/group?
(3) Greedy and normal decomposition : Garside family

Introduction and motivations

Braid groups

The braid group on n strands B_{n} admits the following presentation

$$
\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{c}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \tag{1}\\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} \\
\text { for } \\
\text { for } \\
|i-j| \geqslant 2 \\
|i-j|=1
\end{array}\right.\right\rangle
$$

Introduction and motivations

Braid groups

The braid group on n strands B_{n} admits the following presentation

$$
\left\langle\begin{array}{c|ccc}
\sigma_{1}, \ldots, \sigma_{n-1} & \left.\begin{array}{ccc}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for } & |i-j| \geqslant 2 \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for } & |i-j|=1
\end{array}\right\rangle, \text {.in } \tag{2}
\end{array}\right\rangle
$$

- In his PHD Thesis (1965), Garside solved the word problem and the conjugacy problem for braid groups.
(2) He used the positive braid monoid B_{n}^{+}that possesses the same presentation as B_{n}, but considered as a presentation of monoid.
(3) Why is it easier consider B_{n}^{+}than B_{n} ?
(1) The relations of the presentation are homogeneous and pre-cancellative.
(2) Left and right divisibilities are partial order, there is atoms, every element has a finite set of divisors, one can do induction...
(3) For instance : solving the words problem is obvious : starding from any (positive) word, one can write all the (positive) words that represent the same element in B_{n}^{+}.

Introduction and motivations

Braid groups

Question : What is the connection between B_{n} and B_{n}^{+}?
(1) There is an obvious morphism (of monoids) $\mathfrak{l}: B_{n}^{+} \rightarrow B_{n}, \sigma_{i} \mapsto \sigma_{i}$.
(2) Indeed B_{n} is the enveloping group of B_{n}^{+}.

Problem : In general the canonical morphim $M \rightarrow \operatorname{Env}(M)$ is not into : the enveloping group of the monoid $\left\langle a \mid a^{2}=a\right\rangle$ is the trivial group.
(1) If $M \rightarrow \operatorname{Env}(M)$ is into then M is cancellative ($a b c=a b^{\prime} c \Rightarrow b=b^{\prime}$).
(2) cancellativity is not a sufficient condition for embedding.

Introduction and motivations

Braid groups

Example : Consider

$$
M=\left\langle\begin{array}{l|l}
a, b, c, d, e \left\lvert\, \begin{array}{l}
a b=c d \\
a e b=c e d
\end{array}\right.
\end{array}\right\rangle
$$

(1) The monoid M is cancellative (prove it ! hint :defining relations does not overlap)?
(2) $a e^{2} b \neq c e^{2} d$ in M (no defining relation can be applied to the words)
(3) in $\operatorname{Env}(M)$ one has

$$
a e^{2} b=a e b b^{-1} a^{-1} a e b=c e d d^{-1} c^{-1} c e d=c e^{2} d
$$

Introduction and motivations

Braid groups - Öre criterium

Theorem (left-Öre condition)

Assume M is a monoid so that
(a) M is cancellative ;
(b) For any g, h in M there exists g^{\prime}, h^{\prime} in M so that

$$
g^{\prime} g=h^{\prime} h
$$

Then M embeds in $\operatorname{Env}(M)$ and for any element g of $\operatorname{Env}(M)$ there exists g_{1}, g_{2} in M so that $g=g_{1}^{-1} g_{2}$.

Remark

(1) Similarly, right-Öre conditions holds.
(2) The formalism with arrows is in the spirit of categories. Indeed the result, and its proof extend verbatim to categories (replacing enveloping group with enveloping groupoid).

Introduction and motivations

Braid groups - Öre criterium

Equality $g^{\prime} g=h^{\prime} h$ in the second condition becomes $h^{\prime-1} g^{\prime}=h g^{-1}$ in $\operatorname{Env}(M)$: this allows in any decomposition of an element to push all the inverse elements on the left, and explain why any element can be written as a fraction.

Introduction and motivations

Braid groups - Garside results

In order to solve the word problem and the conjugacy problem, in B_{n} Garside consider monoid of B_{n}^{+}and the particular element (the so-called Garside element) Δ_{n} defined by $\Delta_{1}=1, \quad \Delta_{n}=\Delta_{n-1} \sigma_{n-1} \cdots \sigma_{2} \sigma_{1}$ for $n \geqslant 2$ which in
B_{n} correspond to : $\Delta_{1} \quad \Delta_{2}$

Δ_{3}
the properties of its set of left (right) divisors.

The main tool is
(1) Sets of left divisors and right divisors of Δ coincide (denoted by $\operatorname{Div}\left(\Delta_{n}\right)$).
(2) $\operatorname{Div}\left(\Delta_{n}\right)$ generates B_{n}^{+}.
(3) Any non-empty subset of $\operatorname{Div}\left(\Delta_{n}\right)$ has a unique left (right) Icm in $\operatorname{Div}\left(\Delta_{n}\right)$.

Introduction and motivations

Braid groups - Garside results

FIGURE - The lattice $\left(\operatorname{Div}\left(\Delta_{4}\right), \preceq\right)$ with the 24 left-divisors Δ_{4} in the monoid B_{4}^{+}

Introduction and motivations

Braid groups - Garside results

By induction on the length of elements, Garside gets that
(1) B_{n}^{+}is cancellative;
(2) any two elements of B_{n}^{+}possess a left (right) Icm in B_{n}^{+}.

In particular B_{n}^{+}satisfies the (left and right) Öre conditions and can be identified with the submonoid od B_{n}^{+}of positive braids.
Moreover Δ_{n}^{2} is central and any element g of B_{n} can be written as $g=g^{+} \Delta_{n}^{k}$ with g^{+}in B_{n}^{+}and k in \mathbb{Z}.

Solution to the word problem : any signed word can be transformed into a product of a positive word and a negative word. Then we can verify whether the two words represent the same element in the monoid B_{n}^{+}.

Introduction and motivations

Braid groups - Garside results

Solution to the conjugacy problem :
Since Δ_{n}^{2} is central and any element g of B_{n} can be written as $g=g^{+} \Delta_{n}^{k}$ with g^{+}in B_{n}^{+}and k in \mathbb{Z}, then it enough to solve the conjugacy problem in B_{n}^{+}.
Let $g g^{\prime}$ be in B_{n}^{+}. We can assume $g \neq 1$. Associate to g the set $\operatorname{Conj}_{\infty}(g)$ built in the following way :
(1) Conjo $_{0}(g)=\{g\}$.
(2) $\operatorname{Conj}_{i+1}(g)=\operatorname{Conj}_{i}(g) \cup\left\{g^{\prime \prime}=h g^{\prime} h^{-1} \in B_{n}^{+} \mid g^{\prime} \in \operatorname{Conj}_{i}(g) ; h \in \operatorname{Div}\left(\Delta_{n}\right)\right\}$. (The later set is finite and we can decided if an element is positive)
(3) the processus as to stabilized to Conjo (g).

Now, g and g^{\prime} are conjugated iff g^{\prime} belongs to $\operatorname{Conj}(g)$.

Introduction and motivations

Braid groups - Garside results

The main interesting point is the proof of the result :
(1) Assume a is a positive element that conjugate g into g^{\prime}, that is $g a=a g^{\prime}$
(2) Write $a=a_{1} \cdots a_{r}$ with a_{1}, \ldots, a_{r} in $\operatorname{Div}\left(\Delta_{n}\right) ; a_{r} \neq 1$ and a_{i} of maximal length so that $a_{i} \cdots a_{r}$ can be written as $a_{i} b_{i}$ with b_{i} in B_{n}^{+}.
Then for all i the element $\left(a_{1} \cdots a_{i}\right)^{-1} g\left(a_{1} \cdots a_{i}\right)$ belongs to B_{n}^{+}.
So a_{i} is the left gcd of $a_{i} \cdots a_{r}$ and Δ (then a_{i} is unique), and the decomposition $a=a_{1} \cdots a_{r}$ define a normal form on B_{n}^{+}. One can prove that $a_{1} \cdots a_{i}$ is the left Icm of a and Δ_{n}^{i}.

Introduction and motivations

Braid groups - Garside results

This normal form is not clearly introduced in Garside work but is implicte and it is clearly used in Deligne proof for spherical type Artin-Tits groups (Deligne, Les immeubles des groupes de tresses généralisées, Inventiones Math 17 (1972))
(4.24) Lemme. Soient x, y dans G^{+}. Si x et y sont conjugués, il existe une suite $x_{0}=x, x_{1}, \ldots, x_{n}=y$ d'éléments de G^{+}et une suite d'éléments w_{i} de W telle que
$x_{i+1} r\left(w_{i}\right)=r\left(w_{i}\right) x_{i}$.
Soit $a \in G^{+}$tel que $x a=a y$. Posons $a=r\left(w_{0}\right) \ldots r\left(w_{n-1}\right), w_{i}$ étant l'élément de W de longueur maximum tel que $r\left(w_{i}\right) \ldots r\left(w_{n-1}\right)$ s'écrive sous la forme $r\left(w_{i}\right) b_{i}$ avec $b_{i} \in G^{+}$(4.15). Soit $a_{i}=r\left(w_{0}\right) \ldots r\left(w_{i}\right)$. Nous prouverons que $x_{i}=a_{i}^{-1} \times a_{i}$ est dans G^{+}, de sorte que les x_{i} et w_{i} répondent au problème.

It first explicitely defined by Adian in 1984 and the independently by El-Rifai/Morton on 1994.

Introduction and motivations

Braid groups - Head

(1) In the sequel, for g in B_{n}^{+}we set $\alpha(g)=g \wedge \Delta_{n}$ (for the left divisibility.)
(2) When g_{1}, g_{2} lie in B_{n}^{+}and we by $\alpha\left(g_{1}, g_{2}\right)$ we mean $\alpha\left(g_{1} g_{2}\right)$. By $\omega\left(g_{1}, g_{2}\right)$ we de denote the element so that

$$
g_{1} g_{2}=\alpha\left(g_{1}, g_{2}\right) \omega\left(g_{1}, g_{2}\right)
$$

(3) When g_{1}, g_{2} lie in B_{n}^{+}with $\alpha\left(g_{1}, g_{2}\right)=g_{1}$ (so g_{1} belongs to $\operatorname{Div}\left(\Delta_{n}\right)$) we write :

(4) Given an element, decomposed as a product of elements of $\operatorname{Div}\left(\Delta_{n}\right)$, what is the most efficient way to obtain its normal form?

Introduction and motivations

Braid groups - Normal form

Example

Consider the element $g=\sigma_{3} \sigma_{2}{ }^{2} \sigma_{1} \sigma_{2}{ }^{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}$ in B_{4}^{+}.
$g=\sigma_{3} \sigma_{2} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}$
$g=\sigma_{3} \sigma_{2} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \cdot \sigma_{2} \sigma_{3} \sigma_{2}=$
$\sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{2} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \cdot \sigma_{2} \sigma_{3} \sigma_{2}=$
$\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \cdot \sigma_{3} \sigma_{2} \sigma_{3}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{3}=$

FIGURE - The first domino rule : $\alpha\left(g_{1} g_{2}\right)=\alpha\left(g_{1} \alpha\left(g_{2}\right)\right)$

Introduction and motivations

Braid groups - Normal form

Example

$g=\sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{1} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{1} \cdot \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}=$
$\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{1} \cdot \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \cdot \sigma_{3}=$
$\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \cdot \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{3}=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \cdot \sigma_{3}$

FIGURE - The second domino rule : $\alpha\left(g_{1} g_{2}\right)=g_{1} \Rightarrow \omega\left(g_{1} g_{2} g_{3}\right)=\omega\left(g_{2} g_{3}\right)$

Introduction and motivations

Why consider category/groupoid?
(1) Garside theory extend to monoids that do not satisfied the Öre relations
(2) A lot of definitions extends verbatim to the category context and some property are easier to visualized/understand/prove in this context.
(3) Deligne did in when he extended the results of Garside to any Artin-Tits groups of spherical type.
(1.25) On peut regarder l'ensemble des galeries comme étant l'ensemble des flèches d'une catégorie $\mathrm{Gal}_{0}(V,, / \not)$ ayant les chambres pour objets. De même, les classes d'équivalence de galeries sont les flèches d'une catégorie quotient $\mathrm{Gal}_{+}(V, \mathscr{M})$. Soient A, B et C trois chambres, E une galerie de A à B et F une galerie de B à C. Bien que les conventions générales dans les catégories soient autres, nous continuerons à noter $E F$ le composé de E et F. La loi $*$ (resp. $G \rightarrow-G$) est une antiéquivalence (resp. une équivalence) de $\mathrm{Gal}_{0}(V, \mathscr{M})$ ou $\mathrm{Gal}_{+}(V, \mathscr{M})$ avec elle-même, induisant l'identité (resp. $C \rightarrow-C$) sur l'ensemble des objets.

Quand aucune confusion ne sera à craindre, nous écrirons simplement Gal_{0} et Gal_{+}pour $\mathrm{Gal}_{0}(V, \mathscr{M})$ et $\mathrm{Gal}_{+}(V, \mathscr{M})$ (ou pour une catégorie
 $\mathrm{Gal}_{0}\left(V_{P}, \mathscr{M}_{P}\right)$ ou $\left.\mathrm{Gal}_{+}\left(V_{P}, \mathscr{M}_{P}\right)\right)$. Par abus de langage, nous appelerons souvent galeries les flèches de Gal_{+}.

Introduction and motivations

Why consider category/groupoid?

Example

Since Δ_{4}^{2} is central in B_{4}. The normaliser $N\left(\sigma_{2}\right)$ of σ_{2} in B_{4} is generated (and is the envelopping group of) the monoid $N^{+}\left(\sigma_{2}\right)$ of its positive elements.
We have $\sigma_{2}\left(\sigma_{1} \sigma_{2}\right)=\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}$ and $\sigma_{1} \sigma_{3}=\sigma_{3} \sigma_{1}$. Then
(1) $\sigma_{1} \sigma_{2}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{-1} \in N\left(\sigma_{2}\right)$ but $\sigma_{1} \sigma_{2}, \sigma_{1} \sigma_{2} \sigma_{3} \notin N^{+}\left(\sigma_{2}\right)$.
(2) $\sigma_{1}\left(\sigma_{2}\right)^{2} \sigma_{1} \in N^{+}\left(\sigma_{2}\right)$ and $\sigma_{1} \sigma_{2}\left(\sigma_{3}\right)^{2} \sigma_{2} \sigma_{1} \in N^{+}\left(\sigma_{2}\right)$; their left gcd is $\sigma_{1} \sigma_{2}$ and is not in $N^{+}\left(\sigma_{2}\right)$.
(3) $\sigma_{1} \sigma_{2} \sigma_{3} \cdot \sigma_{2} \sigma_{1} \in N^{+}\left(\sigma_{2}\right)$ but its terms are not in $N^{+}\left(\sigma_{2}\right)$

But $\sigma_{2}\left(\sigma_{1} \sigma_{2}\right)=\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}$ and $\sigma_{2}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)=\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) \sigma_{1}$.
So in order to study the normaliser of a generator, we are lead to consider the groupoid (category) whom objects are the generators and whom morphisms are (positive) elements of B_{4} that conjugate a generator on another. \Rightarrow This is natural candidate to be a Garside groupoid (category).

Introduction and motivations

Why consider category/groupoid?

Example

The category of quasi-centralisers of generators in B_{4}

$\sigma_{2} \sigma_{1}$ lies in $\mathscr{C}\left(\sigma_{1}, \sigma_{2}\right)$ since $\sigma_{1}\left(\sigma_{2} \sigma_{1}\right)=\left(\sigma_{2} \sigma_{1}\right) \sigma_{1}$.
In the category we have $\sigma_{3} \sigma_{2} \cdot \sigma_{1} \cdot \sigma_{3} \sigma_{2}=\sigma_{1} \sigma_{2} \cdot \sigma_{3} \cdot \sigma_{2} \sigma_{1}$.

Garside family

category framework
(1) We only consider small categories (monoid are categories with one object).
(2) We will often the category \mathscr{C} and its set of morphisms $\mathcal{H o m}(\mathscr{C})$
(3) If x, y are object of a category \mathcal{C}, by $\mathscr{C}(x, y)$ we denote the set of morphisms from x to y
(c) if f, g are in $\mathcal{H o m}(\mathscr{C})$, then $f g$ is defined when the source of g is the target of f.
(5) A category is inverse-free if its inverse elements are the unities only.
(6) a (sub)-family of a category \mathscr{C} is a subset of $\mathcal{H o m}(\mathscr{C})$ equiped with the object set, the source map and the target maps.
(3) If S is a family of a category \mathscr{C}, a S-path of length q is a sequence $g_{1}|\cdots| g_{q}$ of elements of S so that the product $g_{1} \cdots g_{q}$ is defined.

Garside family

Definition (greedy path)

Assume that \mathscr{C} is a left-cancellative category and S is a family of \mathscr{C}. A length two \mathscr{C}-path $g_{1} \mid g_{2}$ is called S-greedy if
each relation $h \preccurlyeq f g_{1} g_{2}$ with $h \in S$ implies $h \preccurlyeq f g_{1}$.

A \mathscr{C}-path $g_{1}|\cdots| g_{q}$ is called S-greedy if $g_{k} \mid g_{k+1}$ is S-greedy for each $k<q$.
By definition a length 1 path is greedy.

Garside family

Definition (\mathcal{S}-normal path/decomposition)

Let \mathscr{C} be left-cancellative inverse free category \mathscr{C}.
Assume \mathcal{S} is a family of \mathscr{C} that contains all the identies.
(1) A \mathscr{C}-path is \mathcal{S}-normal if it is \mathcal{S}-greedy and its terms lie in \mathcal{S}.
(2) A family S of an inverse free left-cancellative category \mathscr{C} is said to be a Garside family in \mathscr{C} if every element of \mathscr{C} admits at least one \mathcal{S}-normal decomposition.

Example
 \mathscr{C} is a Garside family of \mathscr{C}.

Example

Let $n \geqslant 1$ and $L_{n}=\left\langle a, b \mid a b^{n}=b^{n+1}\right\rangle^{+}$. Set $S_{n}=\left\{1, a, b, b^{2}, \ldots, b^{n+1}\right\}$. Then L_{n} is left cancellative and S_{n} is a Garside family.

