Garside Categories

E. Godelle

Amiens 2022 - GDR Tresses

3

イロト イポト イヨト イヨト

Garside categories

- Lecture 1 : Do Garside categories exist and why should we care about it?
- Lecture 2 : Working with Garside families in categories and groupoid.
- Lecture 3 : Existence of Garside families Quasi-Garside category.

References

The lecture is based on the reference Book : Foundations of Garside Theory, P. Dehornoy, F. Digne, E. Godelle D. Krammer et J. Michel, *Europ. Math. Soc. Tracts in Mathematics* 22.

- The book does not contain any reference to a notion of a Garside category.
- Only small categories are considered, and are meanly seen as a way to encode a partial product between arrows.

Lecture 1 :

Do Garside categories exist and why should we care about it?

- Introduction and motivations to Garside framework
- Why consider category/groupoid and not just monoid/group?
- Greedy and normal decomposition : Garside family

Braid groups

The braid group on *n* strands B_n admits the following presentation

э

(1)

Braid groups

The braid group on n strands B_n admits the following presentation

$$\left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for} \quad |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for} \quad |i-j| = 1 \end{array} \right\rangle$$

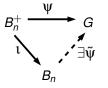
- In his PHD Thesis (1965), Garside solved the word problem and the conjugacy problem for braid groups.
- 2 He used the positive braid monoid B_n^+ that possesses the same presentation as B_n , but considered as a presentation of monoid.
- **(a)** Why is it easier consider B_n^+ than B_n ?
 - The relations of the presentation are homogeneous and pre-cancellative.
 - Left and right divisibilities are partial order, there is atoms, every element has a finite set of divisors, one can do induction...
 - For instance : solving the words problem is obvious : starding from any (positive) word, one can write all the (positive) words that represent the same element in B_n^+ .

(2)

Braid groups

Question : What is the connection between B_n and B_n^+ ?

- There is an obvious morphism (of monoids) $\iota: B_n^+ \to B_n, \sigma_i \mapsto \sigma_i$.
- 2 Indeed B_n is the enveloping group of B_n^+ .



Problem : In general the canonical morphim $M \to Env(M)$ is not into : the enveloping group of the monoid $\langle a \mid a^2 = a \rangle$ is the trivial group.

• If $M \to Env(M)$ is into then *M* is cancellative $(abc = ab'c \Rightarrow b = b')$.

eancellativity is not a sufficient condition for embedding.

Braid groups

Example : Consider

$$M = \left\langle a, b, c, d, e \middle| \begin{array}{c} ab = cd \\ aeb = ced \end{array} \right\rangle$$

- The monoid *M* is cancellative (prove it! hint :defining relations does not overlap)?
- 2 $ae^2b \neq ce^2d$ in *M* (no defining relation can be applied to the words)
- in Env(M) one has

$$ae^2b = aebb^{-1}a^{-1}aeb = cedd^{-1}c^{-1}ced = ce^2d.$$

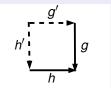
Braid groups - Öre criterium

Theorem (left-Öre condition)

Assume M is a monoid so that (a) M is cancellative;

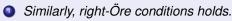
(b) For any g, h in M there exists g', h' in M so that

$$g'g = h'h$$



Then *M* embeds in Env(M) and for any element *g* of Env(M) there exists g_1, g_2 in *M* so that $g = g_1^{-1}g_2$.

Remark

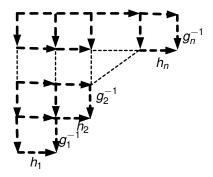


The formalism with arrows is in the spirit of categories. Indeed the result, and its proof extend verbatim to categories (replacing enveloping group with enveloping groupoid).

Braid groups - Öre criterium

Equality g'g = h'h in the second condition becomes $h'^{-1}g' = hg^{-1}$ in

Env(M): this allows in any decomposition of an element to push all the inverse elements on the left, and explain why any element can be written as a fraction.



$$g = h_1 g_1^{-1} h_2 g_2^{-1} \cdots h_n g_n^{-1} = g'^{-1} g''$$

Braid groups - Garside results

In order to solve the word problem and the conjugacy problem, in B_n Garside consider monoid of B_n^+ and the particular element (the so-called Garside element) Δ_n defined by $\Delta_1 = 1$, $\Delta_n = \Delta_{n-1} \sigma_{n-1} \cdots \sigma_2 \sigma_1$ for $n \ge 2$ which in

 B_n correspond to : $\Delta_1 \qquad \Delta_2 \qquad \begin{array}{c} \swarrow_1 \\ \Delta_3 \end{array}$ the properties of its set of left (right) divisors.

Sets of left divisors and right divisors of Δ coincide (denoted by $Div(\Delta_n)$).

- 2 Div (Δ_n) generates B_n^+ .
- Any non-empty subset of Div(Δ_n) has a unique left (right) lcm in Div(Δ_n).

The main tool is

Braid groups - Garside results

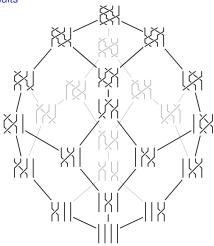


FIGURE – The lattice $(Div(\Delta_4), \preceq)$ with the 24 left-divisors Δ_4 in the monoid B_4^+

Braid groups - Garside results

By induction on the length of elements, Garside gets that

- B_n^+ is cancellative;
- 2 any two elements of B_n^+ possess a left (right) lcm in B_n^+ .

In particular B_n^+ satisfies the (left and right) Öre conditions and can be identified with the submonoid od B_n^+ of positive braids. Moreover Δ_n^2 is central and any element g of B_n can be written as $g = g^+ \Delta_n^k$

Moreover Δ_n^- is central and any element g of B_n can be written as $g = g^+ \Delta_n^-$ with g^+ in B_n^+ and k in \mathbb{Z} .

Solution to the word problem : any signed word can be transformed into a product of a positive word and a negative word. Then we can verify whether the two words represent the same element in the monoid B_n^+ .

ロト イポト イヨト イヨト 二日

Braid groups - Garside results

Solution to the conjugacy problem :

Since Δ_n^2 is central and any element g of B_n can be written as $g = g^+ \Delta_n^k$ with g^+ in B_n^+ and k in \mathbb{Z} , then it enough to solve the conjugacy problem in B_n^+ . Let g g' be in B_n^+ . We can assume $g \neq 1$. Associate to g the set $Conj_{\infty}(g)$ built in the following way :

- Conj₀ $(g) = \{g\}.$
- ② $Conj_{i+1}(g) = Conj_i(g) \cup \{g'' = hg'h^{-1} \in B_n^+ | g' \in Conj_i(g); h \in Div(\Delta_n)\}.$ (The later set is finite and we can decided if an element is positive)
- the processus as to stabilized to $Conj_{\infty}(g)$.

Now, g and g' are conjugated iff g' belongs to Conj(g).

Braid groups - Garside results

The main interesting point is the proof of the result :

- Solution Sector Assume *a* is a positive element that conjugate *g* into g', that is ga = ag'
- **2** Write $a = a_1 \cdots a_r$ with a_1, \ldots, a_r in $\text{Div}(\Delta_n)$; $a_r \neq 1$ and a_i of maximal length so that $a_i \cdots a_r$ can be written as $a_i b_i$ with b_i in B_n^+ .

Then for all *i* the element $(a_1 \cdots a_i)^{-1}g(a_1 \cdots a_i)$ belongs to B_n^+ .

So a_i is the left gcd of $a_i \cdots a_r$ and Δ (then a_i is unique), and the decomposition $a = a_1 \cdots a_r$ define a normal form on B_n^+ . One can prove that $a_1 \cdots a_i$ is the left lcm of a and Δ_n^i .

Braid groups - Garside results

This normal form is not clearly introduced in Garside work but is implicte and it is clearly used in Deligne proof for spherical type Artin-Tits groups (Deligne, Les immeubles des groupes de tresses généralisées, Inventiones Math 17 (1972))

(4.24) Lemme. Soient x, y dans G^+ . Si x et y sont conjugués, il existe une suite $x_0 = x, x_1, ..., x_n = y$ d'éléments de G^+ et une suite d'éléments w_i de W telle que $x_{i+1} r(w_i) = r(w_i) x_i$.

Soit $a \in G^+$ tel que xa = ay. Posons $a = r(w_0) \dots r(w_{n-1})$, w_i étant l'élément de W de longueur maximum tel que $r(w_i) \dots r(w_{n-1})$ s'ècrive sous la forme $r(w_i)b_i$ avec $b_i \in G^+$ (4.15). Soit $a_i = r(w_0) \dots r(w_i)$. Nous prouverons que $x_i = a_i^{-1} x a_i$ est dans G^+ , de sorte que les x_i et w_i répondent au problème.

It first explicitely defined by Adian in 1984 and the independently by El-Rifai/Morton on 1994.

Braid groups - Head

- In the sequel, for g in B_n^+ we set $\alpha(g) = g \wedge \Delta_n$ (for the left divisibility.)
- 2 When g_1, g_2 lie in B_n^+ and we by $\alpha(g_1, g_2)$ we mean $\alpha(g_1g_2)$. By $\omega(g_1, g_2)$ we de denote the element so that

$$g_1g_2 = \alpha(g_1,g_2)\omega(g_1,g_2)$$

So When g_1, g_2 lie in B_n^+ with $\alpha(g_1, g_2) = g_1$ (so g_1 belongs to $\text{Div}(\Delta_n)$) we write :

Siven an element, decomposed as a product of elements of $\text{Div}(\Delta_n)$, what is the most efficient way to obtain its normal form?

Braid groups - Normal form

Example

Consider the element $g = \sigma_3 \sigma_2^2 \sigma_1 \sigma_2^2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1$ in B_4^+ . $g = \sigma_3 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1$ $g = \sigma_3 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 \cdot \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \cdot \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1 \cdot \sigma_2 \sigma_3 \sigma_2 =$ $\sigma_3 \sigma_2 \cdot \sigma_1 \sigma_2 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \cdot \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \cdot \sigma_1 \sigma_2 \cdot \sigma_2 \sigma_3 \sigma_2 =$ $\sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \cdot \sigma_1 \sigma_2 \cdot \sigma_3 \sigma_2 \sigma_3 = \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_2 \cdot \sigma_1 \sigma_2 \sigma_3 \sigma_2 \cdot \sigma_3 =$

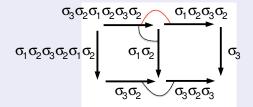


FIGURE – The first domino rule : $\alpha(g_1g_2) = \alpha(g_1\alpha(g_2))$

Braid groups - Normal form

Example

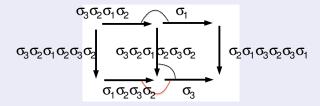


FIGURE – The second domino rule : $lpha(g_1g_2)=g_1\Rightarrow\omega(g_1g_2g_3)=\omega(g_2g_3)$

_	÷	
	Godel	le

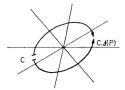
Why consider category/groupoid?

- Garside theory extend to monoids that do not satisfied the Öre relations
- A lot of definitions extends verbatim to the category context and some property are easier to visualized/understand/prove in this context.
- Deligne did in when he extended the results of Garside to any Artin-Tits groups of spherical type.

(1.25) On peut regarder l'ensemble des galeries comme étant l'ensemble des flèches d'une catégorie Gal₀(V, \mathcal{M}) ayant les chambres pour objets. De même, les classes d'équivalence de galeries sont les flèches d'une catégorie quotient Gal₊(V, \mathcal{M}). Soient A, B et C trois chambres, E une galerie de A à B et F une galerie de B à C. Bien que les conventions générales dans les catégories soient autres, nous continuerons à noter EF le composé de E et F. La loi * (resp. $G \to -G$) est une antiéquivalence (resp. une équivalence) de Gal₀(V, \mathcal{M}) ou Gal₊(V, \mathcal{M}) avec elle-même, induisant l'identité (resp. $C \to -C$) sur l'ensemble des objets.

Quand aucune confusion ne sera à craindre, nous écrirons simplement $\operatorname{Gal}_0\operatorname{et}\operatorname{Gal}_1$, pour $\operatorname{Gal}_0(V, \mathscr{M})$ et $\operatorname{Gal}_1(V, \mathscr{M})$ (ou pour une catégorie $\operatorname{Gal}_0(V_p, \mathscr{M}_p)$ ou $\operatorname{Gal}_1(V_p, \mathscr{M}_p)$). Par abus de langage, nous appelerons souvent galeries les flèches de Gal_1 .

and a second of the second



Why consider category/groupoid?

Example

Since Δ_4^2 is central in B_4 . The normaliser $N(\sigma_2)$ of σ_2 in B_4 is generated (and is the envelopping group of) the monoid $N^+(\sigma_2)$ of its positive elements. We have $\sigma_2(\sigma_1\sigma_2) = (\sigma_1\sigma_2)\sigma_1$ and $\sigma_1\sigma_3 = \sigma_3\sigma_1$. Then

- $\ \, \bullet \ \, \sigma_1\sigma_2(\sigma_1\sigma_2\sigma_3)^{-1}\in N(\sigma_2) \text{ but } \sigma_1\sigma_2, \sigma_1\sigma_2\sigma_3\not\in N^+(\sigma_2).$
- $\ \ \, {\mathfrak S} \ \ \, {\mathfrak S}_1\sigma_2\sigma_3\cdot\sigma_2\sigma_1\in {\sf N}^+(\sigma_2) \ \ \, \text{but its terms are not in } {\sf N}^+(\sigma_2)$

But $\sigma_2(\sigma_1\sigma_2) = (\sigma_1\sigma_2)\sigma_1$ and $\sigma_2(\sigma_1\sigma_2\sigma_3) = (\sigma_1\sigma_2\sigma_3)\sigma_1$.

So in order to study the normaliser of a generator, we are lead to consider the groupoid (category) whom objects are the generators and whom morphisms are (positive) elements of B_4 that conjugate a generator on another. \Rightarrow This is natural candidate to be a Garside groupoid (category).

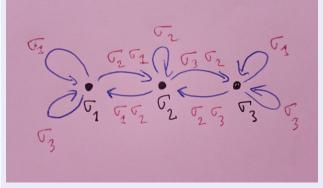
- 32

イロト イロト イヨト イヨト

Why consider category/groupoid?

Example

The category of quasi-centralisers of generators in B₄



$$\begin{split} &\sigma_2\sigma_1 \text{ lies in } \mathscr{C}(\sigma_1,\sigma_2) \text{ since } \sigma_1(\sigma_2\sigma_1) = (\sigma_2\sigma_1)\sigma_1.\\ & \text{ In the category we have } \sigma_3\sigma_2\cdot\sigma_1\cdot\sigma_3\sigma_2 = \sigma_1\sigma_2\cdot\sigma_3\cdot\sigma_2\sigma_1. \end{split}$$

Garside family

category framework

- We only consider small categories (monoid are categories with one object).
- **2** We will often the category \mathscr{C} and its set of morphisms $\mathcal{H}om(\mathscr{C})$
- If x, y are object of a category C, by C(x, y) we denote the set of morphisms from x to y
- if f, g are in Hom(C), then fg is defined when the source of g is the target of f.
- A category is inverse-free if its inverse elements are the unities only.
- a (sub)-family of a category C is a subset of Hom(C) equiped with the object set, the source map and the target maps.
- If *S* is a family of a category \mathscr{C} , a *S*-path of length *q* is a sequence $g_1 | \cdots | g_q$ of elements of *S* so that the product $g_1 \cdots g_q$ is defined.

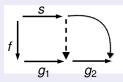
イロト イポト イヨト イヨト 一日

Garside family

Definition (greedy path)

Assume that \mathscr{C} is a left-cancellative category and *S* is a family of \mathscr{C} . A length two \mathscr{C} -path $g_1|g_2$ is called *S*-greedy if

each relation $h \preccurlyeq fg_1g_2$ with $h \in S$ implies $h \preccurlyeq fg_1$.



A \mathscr{C} -path $g_1 | \cdots | g_q$ is called *S*-greedy if $g_k | g_{k+1}$ is *S*-greedy for each k < q.

By definition a length 1 path is greedy.

Garside family

Definition (S-normal path/decomposition)

Let \mathscr{C} be left-cancellative inverse free category \mathscr{C} . Assume \mathcal{S} is a family of \mathscr{C} that contains all the identies.

- A C-path is S-normal if it is S-greedy and its terms lie in S.
- A family S of an inverse free left-cancellative category C is said to be a Garside family in C if every element of C admits at least one S-normal decomposition.

Example

 $\mathscr C$ is a Garside family of $\mathscr C$.

Example

Let $n \ge 1$ and $L_n = \langle a, b | ab^n = b^{n+1} \rangle^+$. Set $S_n = \{1, a, b, b^2, \dots, b^{n+1}\}$. Then L_n is left cancellative and S_n is a Garside family.

- 32

イロト イポト イヨト イヨト