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Lecture 2 :
Working with Garside families in

categories and groupoid.
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Garside family
Greediness

Definition (greedy path)

Assume that C is a left-cancellative category and S is a family of C . A length
two C -path g1|g2 is called S-greedy if

each relation h4 fg1g2 with h ∈ S implies h4 fg1.

g1 g2

f

s

A C -path g1| ··· |gq is called S-greedy if gk |gk+1 is S-greedy for each k < q.

By definition a length 1 path is greedy.

Notation for greediness : g1 g2
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Garside family
Greediness

Proposition
Assume that C is a inverse-free left-cancellative category.
Let S be a family of C that generates C , contains the identity elements, is
closed under right-comultiple is closed under right-divisor.
Then, for every C -path g1|g2 with g1 in S , the following are equivalent :
(i) The path g1|g2is S -greedy (h4 fg1g2 and h ∈ S⇒ h4 fg1) ;
(ii) For every h in S , h4 g1g2⇒ h4 g1 ;
(iii) The unique element h of C satisfying both g1h ∈ S and h4 g2 is 1x , where
x is the target of g1 .

1 The general case 173

Definition 1.3 (closure II). (See Figure 1.) (i) A subfamily S of a left-cancellative cate-
gory C is said to be closed under right-comultiple if every common right-multiple of two
elements s, t of S (if any) is a right-multiple of a common right-multiple of s, t lying in S.

(ii) In the same context, S is said to be closed under right-complement if, when s, t
lie in S and sg = tf holds in C, there exist s′, t′ in S and h in C satisfying st′ = ts′,
f = s′h, and g = t′h.

∈S

∈S ∈S
∈S

∈S

∈S ∈S

Figure 1. Closure under right-comultiple (left) and right-complement (right): every diagram corresponding to a
common right-multiple of elements of S splits, witnessing for a factorization through a common right-multiple
of a special type: in the case of closure under right-comultiple, the diagonal of the square lies in S , whereas, in
the case of closure under right-complement, the edges lie in S .

Remark 1.4. The correspondence between the definition of closure under right-comulti-
ple and the diagram of Figure 1 is valid only in the context of a left-cancellative category.
Indeed, the diagram splitting amounts to the relation

(1.5) If s, t lie in S and sg = tf holds in C, there exist f ′, g′, h satisfying
sg′ = tf ′, f = f ′h, g = g′h, and such that sg′ lies in S,

whereas Definition 1.3(ii) corresponds to

(1.6) If s, t lie in S and sg = tf holds in C, there exist f ′, g′, h satisfying
sg′ = tf ′, tf = tf ′h, sg = sg′h, and such that sg′ lies in S.

Clearly, (1.5) implies (1.6), but the converse implication is guaranteed only if one can
left-cancel s and t in the last two equalities of (1.5).

Example 1.7 (closure). Assume that (M, ∆) is a Garside monoid (Definition I.2.1). Then
the family Div(∆) is closed under right-divisor, right-comultiple, and right-complement.
As for closure under right-divisor, it directly follows from the definition: if t is a left-
divisor of ∆ and t′ is a right-divisor of t, then, as t is also a right-divisor of ∆, the
element t′ is a right-divisor of ∆, hence a left-divisor of ∆.

Next, assume that s, t lie in Div(∆) and sg = tf holds. By the definition of a Garside
monoid, s and t admit a right-lcm, say h, hence sg is a right-multiple of h. On the other
hand, ∆ is a right-comultiple of s and t, hence it is a right comultiple of their right-lcm h.
In other words, h lies in Div(∆), and Div(∆) is closed under right-comultiple.

Finally, with the same assumptions, let us write h = st′ = ts′. As h left-divides ∆
and Div(∆) is closed under right-divisor, s′ and t′ belong to Div(∆). So Div(∆) is
closed under right-complement.
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Garside family
Greediness

Example

In B4 , let S be the set of left-divisor of ∆. Then, σ3σ2σ1σ2σ3σ2 | σ1σ2σ3σ2σ3
and σ3σ2σ1σ2σ3σ2 | σ1σ2σ3σ2 | σ3 are S greedy.

(Recall Lecture 1 : g = σ3σ2
2σ1σ2

2σ1σ2σ3σ2σ1 in B+
4 .)

σ3σ2σ1σ2σ3σ2 σ1σ2σ3σ2

σ3σ1σ2

σ3σ2σ3σ3σ2

σ1σ2σ3σ2σ1σ2

Example

Let L2 = 〈a,b |ab2 = b3〉+. Set Sn = {1,a,b,b2,b3}. Then b | a | b2 is not S
greedy because a | b2 is not.
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Proposition (grouping entries)
Assume that C is a left-cancellative category and S is included in C . If a path
g1| ··· |gq is S -greedy, then so is every path obtained from g1| ··· |gp by replacing
adjacent entries by their product. In particular, g1|g2 ···gp is S -greedy, that is

each relation h4 fg1 ···gq with h ∈ S implies h4 fg1. (1)

proof : g1 ···gq | gp+1 ···gq is S -greedy.
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Garside family
greediness

Definition (S -normal path/decomposition)
Assume S is a family of a left-cancellative inverse free category C .

1 A C -path is S -normal if it is S -greedy and its not identity terms lie in S .
2 A S -normal C -path is strict when no terms is an identity of C . In

particular, this is a S -path.
3 A S -normal decomposition of g in C is a S -normal path g1| ··· |gp so that

g = g1 · · ·gp.

Proposition
For any family S of an inverse-free left-cancellative category C , every element
of C admits at most one strict S -normal decomposition.
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Garside family

Definition (Garside family)
A family S of an inverse free left-cancellative category C is said to be a Garside
family in C if every element of C admits at least one S -normal decomposition.

In this case, for g in C , by ‖g‖S we denote the number not unity terms of any
of its S -normal decomposition. For a identity, this is 0 and for a not identity
element this is the number of terms of its strict S -normal decomposition.

Remark
1 This is equivalent to ask that every not identity element of C admits a

(unique) strict S -normal decomposition.
2 If S is a Garside family of C , then so is S ∪S 2∪·· ·S k for every k ≥ 1.

Example
C is a Garside family of C .
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Garside monoid

Definition
A Garside monoid is a pair (M,∆) where M is a monoid such that
• M is left- and right-cancellative,
• there exists λ : M→N satisfying λ(fg) > λ(f ) + λ(g) and g 6= 1⇒ λ(g) 6= 0,
• any two elements of M have a left- and a right-lcm and a left- and a right-gcd,
• ∆ is a Garside element of M, this meaning that the left- and right-divisors
of ∆ coincide, generate M, and are finite in number.

Proposition

Let A+ be any Artin-Tits monoids and ι be the canonical set section from the
associated Coxeter group W to A+. Then

1 ι(W ) is a Garside family of A+.
2 A+ is a Garside monoid when W is finite and in this case, ι(ω0) is a

Garside element of A+.
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Garside family
Normal decomposition

Proposition
Assume S is a family of an inverse free left-cancellative category C . If g ∈ S p

possesses a strict S -normal decompostion g1| ··· |gq , then q ≤ p.

Proposition
Let S is a subfamily of an inverse free left-cancellative category C . Assume
that S generates C . Then the two properties are equivalent

1 S is a Garside family
2 Any element of S 2 possesses S -normal decomposition.
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Garside family
First Domino Rule

Proposition
Assume C is an inverse free left-cancellative category, S is a family of C .
Assume the C -path g1 | g2 is S -greedy. Let g′1 be a left-multiple of g1 and g′2 is
a left-divisor of g2. Then g1 | g2 is S -greedy as well.

Proposition (First domino rule)
Assume C is an inverse free left-cancellative category, S is a family of C , and
we have a the following commutative diagram with edges in C .

g1 g2

g′1 g′2

f f ′ f ′′

If g1|g2 and g′1|f ′ are S -greedy, then g′1|f ′g2 and g′1|g′2 are S -greedy as well.

proof : exercice !
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Garside family
proof of the proposition

s1

s2

sp−1

sp

t1 t2 tp−1 tp

=

=

=

Transform the S -path s1| ··· |sp into
the S -normal path t1| ··· |tp.
Each horizontal path is a S -normal
path. This takes p(p−1)/2 steps.
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Introduction and motivations
Braid groups - Normal form

Example

Consider the element g = σ3σ2
2σ1σ2

2σ1σ2σ3σ2σ1 in B+
4 .

g = σ3σ2 ·σ2σ1σ2 ·σ2σ1σ2σ3σ2σ1
g = σ3σ2 ·σ2σ1σ2 ·σ3σ2σ1σ2σ3σ2 = σ3σ2 ·σ2σ1σ2σ3σ2σ1 ·σ2σ3σ2 =
σ3σ2 ·σ1σ2σ3σ2σ1σ2 ·σ2σ3σ2 = σ3σ2σ1σ2σ3σ2 ·σ1σ2 ·σ2σ3σ2 =
σ3σ2σ1σ2σ3σ2 ·σ1σ2 ·σ3σ2σ3 = σ3σ2σ1σ2σ3σ2 ·σ1σ2σ3σ2 ·σ3 =

σ3σ2σ1σ2σ3σ2 σ1σ2σ3σ2

σ3σ1σ2

σ3σ2σ3σ3σ2

σ1σ2σ3σ2σ1σ2
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Garside family
Length

Proposition
Assume that C is a left-cancellative category and S is a Garside family of C .
Then, for every C -path f |g, we have

‖g‖S 6 ‖fg‖S 6 ‖f‖S +‖g‖S .

f

g
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Garside family
Length

Example

Let n > 1 and Ln = 〈a,b |abn = bn+1〉+. Set S = {1,a,b,b2, ... ,bn+1}. Then Ln

is left cancellative and Sn is a Garside family (exercice). The strict S -normal
decomposition of abn−1 is a | bn−1, but the S -normal decomposition of
abn−1 ·b is bn+1. so ‖abn−1 ·b‖S < ‖abn−1‖S .

Definition (Second domino rule)
Assume C is a inverse-free left-cancellative category and S a family in C . The
second domino rule is valid if, whenever s1|s2 and t ′|s′2 are S -greedy in a
commutative diagram as below with edges in S , then s′1|s′2 is S -greedy as well.

s1 s2

s′1 s′2

t t ′ t ′′
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Garside family
Length

s1 s2

s′1 s′2

t t ′ t ′′

Normal decomposition using the second domino rule :
116 III Normal decompositions

s′
0 s′

1 s′
p−1 s′

p

s1 sp−1 sp s

r0 r1 rp−2 rp−1 rp

Figure 10. Algorithm 1.60: starting from an S-normal path s1| ··· |sp and an element s of S!, it returns an
S-normal decomposition of s1 ···sps. Attention: the correctness of the method is guaranteed only if the second
domino rule is valid for S .

Proposition 1.61 (right-multiplication). If S is a Garside family in a left-cancellative
category C, if the second domino rule is valid for S, and if F is a !-witness for S!, then
Algorithm 1.60 running on an element s of S! and an S-normal decomposition s1| ··· |sp

of an element g of C returns an S-normal decomposition of gs. The function F is called
p times.

Proof. As the diagram of Figure 10 is commutative, we have s′
0 ···s′

p = r0s
′
1 ···s′

p =
s1 ···sprp = gs. Applying the second domino rule to each two-square subdiagram of the
diagram starting from the right, we see that s′

0|s′
1| ··· |s′

p is S-greedy. As all entries lie
in S!, this path is S-normal.

The effect of the second domino rule is to shorten the computation of certain normal
decompositions. Assume that s1| ··· |sp and t1| ··· |tq are S-normal paths and spt1 is de-
fined. By applying Proposition 1.61, we can compute an S-normal decomposition of the
product s1 ···spt1 ···tq by filling a diagram as in Figure 11. When valid, the second do-
mino rule guarantees that the path consisting of the first q top edges followed by p vertical
edges is S-normal, that is, the triangular part of the diagram may be forgotten. The failure
of this phenomenon in the context of Example 1.59 is illustrated in Figure 12.

t′1 t′q t′q+1 t′p+q

t1 tq

s1

sp

s′
1

s′
p

Figure 11. Finding an S-normal decomposition of s1 ···spt1 ···tq when s1| ··· |sp and t1| ··· |tq are S-normal:
using Proposition 1.49, hence the first domino rule only, one determines the S-normal path t′1 | ··· |t′p+q in
pq + p(p − 1)/2 steps; if the second domino rule is valid, the path s′

1| ··· |s′
p is already S-normal, and

t′1| ··· |t′q |s′
1| ··· |s′

p is S-normal. Note that, by uniqueness, t′q+1| ··· |t′p+q must then be a C×-deformation
of s′

1| ··· |s′
p.
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Garside family
Length

Proposition
Assume that C is a inverse free left-cancellative category and S is a Garside
family of C for which the second domino rule is valid and, moreover, every
left-divisor of an element of S lies in S . Then, for all C -path

max(‖f‖S ,‖g‖S )≤ ‖fg‖S ≤ ‖f‖S +‖g‖S

f

g

116 III Normal decompositions

s′
0 s′

1 s′
p−1 s′

p

s1 sp−1 sp s

r0 r1 rp−2 rp−1 rp

Figure 10. Algorithm 1.60: starting from an S-normal path s1| ··· |sp and an element s of S!, it returns an
S-normal decomposition of s1 ···sps. Attention: the correctness of the method is guaranteed only if the second
domino rule is valid for S .

Proposition 1.61 (right-multiplication). If S is a Garside family in a left-cancellative
category C, if the second domino rule is valid for S, and if F is a !-witness for S!, then
Algorithm 1.60 running on an element s of S! and an S-normal decomposition s1| ··· |sp

of an element g of C returns an S-normal decomposition of gs. The function F is called
p times.

Proof. As the diagram of Figure 10 is commutative, we have s′
0 ···s′

p = r0s
′
1 ···s′

p =
s1 ···sprp = gs. Applying the second domino rule to each two-square subdiagram of the
diagram starting from the right, we see that s′

0|s′
1| ··· |s′

p is S-greedy. As all entries lie
in S!, this path is S-normal.

The effect of the second domino rule is to shorten the computation of certain normal
decompositions. Assume that s1| ··· |sp and t1| ··· |tq are S-normal paths and spt1 is de-
fined. By applying Proposition 1.61, we can compute an S-normal decomposition of the
product s1 ···spt1 ···tq by filling a diagram as in Figure 11. When valid, the second do-
mino rule guarantees that the path consisting of the first q top edges followed by p vertical
edges is S-normal, that is, the triangular part of the diagram may be forgotten. The failure
of this phenomenon in the context of Example 1.59 is illustrated in Figure 12.

t′1 t′q t′q+1 t′p+q

t1 tq

s1

sp

s′
1

s′
p

Figure 11. Finding an S-normal decomposition of s1 ···spt1 ···tq when s1| ··· |sp and t1| ··· |tq are S-normal:
using Proposition 1.49, hence the first domino rule only, one determines the S-normal path t′1 | ··· |t′p+q in
pq + p(p − 1)/2 steps; if the second domino rule is valid, the path s′

1| ··· |s′
p is already S-normal, and

t′1| ··· |t′q |s′
1| ··· |s′

p is S-normal. Note that, by uniqueness, t′q+1| ··· |t′p+q must then be a C×-deformation
of s′

1| ··· |s′
p.
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Garside family
Domino rules 1 and 2

g1 g2

g′1 g′2

f f ′ f ′′

FIGURE – Domino Rule 1

s1 s2

s′1 s′2

t t ′ t ′′

FIGURE – Domino Rule 2

Remark
The equality

max(‖f‖S ,‖g‖S ≤ ‖fg‖S ≤ ‖f‖S +‖g‖S

may hold even if the second domino rule does not hold. This is for instance the
case when C is cancellative and S is both a left Garside family and a right
Garside family.
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Garside family
Length

Definition (closure)
Assume that C is an inverse free cancellative category and S is a family in C .
(i) (left-divisor) We say that S is closed under left-divisor if every left-divisor of
an element of S is an element of S .
(ii) (left-comultiple) We say that S is closed under left-comultiple if every
common left-multiple of two elements f ,g of S (if any) is a left-multiple of some
common left-multiple of f ,g that lies in S .

Proposition
Assume that C is an inverse free cancellative category and S is a Garside
family of C such that

(a) S ∪1C is closed under left-divisor ;

(b) S is closed under left-comultiple.

Then, the second domino rule is valid for S in C .
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Garside family
Closure property

Proposition
Let S is a subfamily of an inverse free left-cancellative category C . Assume
that S generates C . Then the two following properties are equivalent

1 S is a Garside family.
2 (a) S ∪1C is closed under right-divisor ;

(b) S is closed under right-comultiple ;
(c) Any element of S 2 admits a maximal left divisor in S .

Definition
Assume that C is an inverse free cancellative category and S is a Garside
family of C . The family S is called solid when it contains 1C and it is closed
under right-divisor.

So, any Garside family that contains 1C is solid. Later on, we will see
caracterisation of Garside family under the assumption that the family is solid.
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Garside family
In groupoid

We turn now to groupoid. Here Öre condition will be needed.

Definition (left-disjoint)
Two elements f ,g of a left-cancellative category C are called left-disjoint if they
have the same source and satisfy :

∀h,h′∈C ((h′4 hf & h′4 hg )⇒ h′4 h).

Notation :
f g
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Garside family
In groupoid

The two following result explains why left-disjoint property is relevant in Garside
framwork :

Proposition
Assume that C is a left-Ore category. Then, two elements f ,g of C with the
same source are left-disjoint if and only if, for all f ′,g′ in C such that
f−1g = f ′−1g′ holds in Env(C ), there exists h satisfying f ′ = hf and g′ = hg.

In particular for an inverse free left-Öre category C , any element of Env(C )
possesses at most one decomposition as a left-disjoint fraction.

Proposition
Assume that C is a left-cancellative inverse free category, S is family in C , and
S generates C . For any S -greedy paths f1| ··· |fp and g1| ··· |gq , the following
are equivalent :
(i) f1 and g1 are left-disjoint.
(ii) f1 ··· fp and g1 ···gq are left-disjoint ;
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Garside family
In groupoid

Definition (symmetric greedy)
Assume that C is an inverse free left-cancellative category and S is a family
in C . A signed C -path fp | ··· |f1|g1| ··· |gq is called symmetric S -greedy if

1 the paths f1| ··· |fp and g1| ··· |gq are S -greedy
2 f1 and g1 are left-disjoint.

Definition (symmetric normal)
Assume C is an inverse free left-cancellative category and S is a family in C . A
signed C -path fp | ··· |f1|g1| ··· |gq is called symmetric S -normal (resp. strictly
symmetric S -normal) if

1 the paths f1| ··· |fp and g1| ··· |gq are S -normal (resp. strictly S -normal)
2 f1 and g1 are left-disjoint.
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Garside family
In groupoid

Proposition (symmetric normal unique I)

Assume C is an inverse free left Öre category, S is a family in C , and S
generates C . Then any element of Env(C ) admits at most one strict S -normal
decompositions

Proposition (symmetric normal exist)

Assume that C is an inverse free Öre category and S is a Garside family in C .
Then the following are equivalent :

1 Every element of Env(C ) admits a symmetric (strict) S -normal
decomposition ;

2 The category C admits left-lcms.
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Garside family
Computing symmetric normal decompostion

Definition (strong Garside)
Assume that C is an inverse free category that admits left-lcms. Then a
Garside family S of C is called strong if for any s, t in S ∪1C with common
target possess a left lcm s∨ t and there exists s′, t ′ in S ∪1C so that
s∨ t = s′t = t ′s. We say that S is perfect if in addition left lcm lies in S too.

Proposition
Assume that C is an inverse free cancellative category that admits local
left-lcms. Then, for every Garside family S of C , the following are equivalent :
(i) S is a strong (resp. perfect) Garside family in C ;
(ii) S ∪1C is closed under left-complement (resp. this and left-comultiple).
Moreover, when the above conditions are met, S ∪1C is closed under
left-divisor.
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Garside family
Computing symmetric normal decompostion

Proposition (strong exists)
Assume that C is a left-Ore category. Then the following are equivalent :
(i) Some Garside family of C is strong ;
(ii) The category C viewed as a Garside family in itself is strong ;
(iii) The category C admits left-lcms.

Proposition

Assume that C is an inverse free cancellative category that admits left-lcms
and S is a strong Garside family in C .
(i) Every element of Env(C ) that can be represented by a positive–negative
S -path of length ` admits a symmetric S -normal decomposition of length at
most `.
(ii) For every positive–negative S -path, there is an algorithm that returns in
quadratic time. the symmetric S -normal decomposition of the element of
Env(C ) represented by the S -path.
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Garside family
Computing symmetric normal decomposition

FIGURE – Algo 1 FIGURE – Algo 2
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Garside family
Recognizing Garside families

Proposition
Assume that C is a left-cancellative inverse-free category and S is a solid
generating subfamily of C . Then the following are equivalent :
(i) The category C is right-Noetherian and S is Garside in C ;
(ii) The family S is locally right-Noetherian and closed under right-comultiple.

Proposition

Assume that C is a left-cancellative inverse-free category that is
right-Noetherian and admits conditional right-lcms. Then a family S that
generates C and contains 1C is a Garside family in C if and only if any one of
the following conditions is satisfied :
(i) S is closed under right-lcm and right-divisor ;
(ii) S is closed under right-lcm and right-complement ;
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Proposition (smallest Garside)
Assume that C is a strongly-noetherian left-cancellative inverse-free category.
Then there exists a smallest Garside family S in C containing 1C , namely the
closure of the atoms under right-mcm and right-divisor.

Example
The category of positive quasi-
centralisers of generators in B4

is cancellative inverse-free and
strongly-noetherian. Its atom set
consists on the red morphisms. So
its closure under right-mcm ( indeed
right lcm) and right-divisor is a Gar-
side family. The second domino rule
holds.
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Garside family
Recognizing Garside families

Example
The smallest strong Garside family of the category of positive
quasi-centralisers of generators in B4 is the union of all represented morphisms
plus the 3 identity elements.

σ2
−1∆4 = σ3σ2 ·σ1 ·σ2σ3 = σ1σ2 ·σ3 ·σ2σ1.
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Garside family
Presentation

Proposition
Assume that C is a left-cancellative inverse-free category and S is a solid
Garside family in C . Then C admits the presentation 〈S |R〉+ where R consists
on the family of all relations fg = h with f ,g,h in S that are valid in C make a
presentation of C in terms of S .

Remark
Obviously this presentation is not minimal in terms of generators ( since we
only need the atoms to generate the category). If S is finite, we get a finite
presentation.
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Garside family
Presentation

Example
The category C of positive quasi-centralisers of the generators in B4 has a
presentation with the already seen atom set and the defining relations :

1 In C (σ1, ·)
(a) σ1σ3 = σ3σ1 ;
(b) σ1 ·σ2σ1 = σ2σ1 ·σ2 ;
(c) σ2σ1 ·σ3σ2 ·σ1 = σ3 ·σ2σ1 ·σ3σ2

2 In C (σ3, ·) :
(a) σ1σ3 = σ3σ1 ;
(b) σ3 ·σ2σ3 = σ2σ3 ·σ2 ;
(c) σ2σ3 ·σ1σ2 ·σ3 = σ1 ·σ2σ3 ·σ1σ2

3 In C (σ2, ·) :
(a) σ2 ·σ1σ2 = σ1σ2 ·σ1 ;
(b) σ2 ·σ3σ2 = σ2σ3 ·σ3 ;
(c) σ3σ2 ·σ1 ·σ2σ3 = σ1σ2 ·σ3 ·σ2σ1
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