### **Garside Categories**

E. Godelle

#### Amiens 2022 - GDR Tresses

э

イロト イポト イヨト イヨト

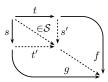
# Lecture 3 : Existence of Garside families -Quasi-Garside category.

subcategory

#### Proposition

Assume that  $\mathscr{C}$  is a left-cancelative, right-noetherian inverse-free category. Assume moreover that  $\mathscr{C}$  admits conditional right lcms. Let  $\mathcal{S}_1$  be a family of  $\mathscr{C}$  containing  $\mathbf{1}_{\mathscr{C}}$  that is closed under right-diamond. Denote by  $\mathscr{C}_1$  the subcategory of  $\mathscr{C}$  generated by  $\mathcal{S}_1$ . Then

2  $S_1$  is a Garside family of  $C_1$ .

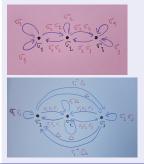


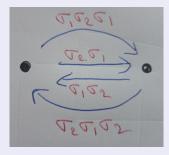
subcategory

### Example

Consider  $B_3$  embeds in  $B_4$  Let S be the smallest strong Garside family of the category of positive quasi-centralisers of generators in  $B_4$ . Then its intersection with the category of positive quasi-centralisers of generators in  $B_3$  is a Garside family.

In other word the family below is a Garside family of the subcategory that it generates in the category of positive quasi-centralisers of generators in B<sub>4</sub>.





subcategory

#### Proposition

Assume that  $\mathscr{C}$  is a left-cancellative, inverse-free category and S is a Garside family of  $\mathscr{C}$ . Assume  $\varphi$  is an automorphism of the category  $\mathscr{C}$  such that  $\varphi(S) = S$ . Then  $S \cap \mathscr{C}^{\varphi}$  is a Garside family of  $\mathscr{C}^{\varphi}$ .

#### Example

In  $B_4^+$ , consider the automorphism  $\varphi$  that fixes  $\sigma_2$  and exchanges the generators  $\sigma_1$  and  $\sigma_3$ . Then, it generated by  $\sigma_2$  and  $\sigma_1 \sigma_3$ . Moreover

 $\{1; \sigma_1\sigma_3, ; \sigma_2; \sigma_1\sigma_3\sigma_2; \sigma_2\sigma_1\sigma_3; \sigma_2\sigma_1\sigma_3\sigma_2; \sigma_1\sigma_3, ; \sigma_2; \sigma_1\sigma_3; \Delta\}$ 

is a Garside family of  $(B_4^+)^{\phi}$ . The later has the following presentation :  $\langle a, b | abab = baba \rangle$  with  $a = \sigma_1 \sigma_3$  and  $b = \sigma_2$ 

subcategory

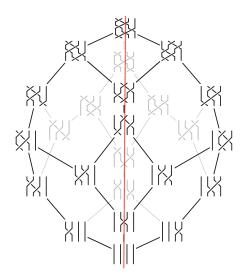


FIGURE – The lattice  $(Div(\Delta_4), \preceq) \cap (B_4^+)^{\phi}$  with its 8 elements.

Parabolic subcategory

#### Definition

Assume that  $\mathscr{C}$  is an inverse-free left cancellative and right-noetherian category. A subcategory  $\mathscr{C}_1$  of  $\mathscr{C}$  is a parabolic subcategory of  $\mathscr{C}$  when it is closed by right-comultiple and by factor.

#### Proposition

Assume that  ${\mathscr C}$  is an inverse-free left cancellative and right-noetherian category. Then

Any parabolic subcategory is strongly compatible with *S*. That is *S* ∩ *C*<sub>1</sub> is a Garside family of *C*<sub>1</sub> and for any elements of *C*<sub>1</sub>, its *S*-Normal decomposition ans its *S* ∩ *C*<sub>1</sub>- normal decomposition coincide.

any intersection of parabolic subcategories is a parabolic subcategory.

How to obtain basic properties on categories

Here we are facing some difficulties regarding Garside approach : In his work Garside prove by induction at the same time that

- $B_n^+$  is (left-) cancellative,
- 2  $B_n^+$  possesses (left and right) lcm
- **3**  $B_n^+$  The normal form exists

But all our results assume, at least that the category is left-cancellative and more properties to obtain properties for the enveloping groupoid.

So we need some technic to obtain some property of a category.

complemented presentation

### Definition (right-complemented)

A category presentation  $(\mathcal{S}, \mathcal{R})$  is said to be *right-complemented*, if  $\mathcal{R}$  contains

- no ε relation,
- 2 no relation  $s \cdots = s \cdots$

• for each  $s \neq t$  in S at most one relation  $s \cdots = t \cdots$ .

In this case, The (syntactic) right-complement  $\theta : S^2 \to S^*$  is defined by  $\theta(s,s) = \varepsilon$ . When  $\theta(s,t)$  is defined  $s\theta(s,t) = t\theta(t,s)$  holds in C.

#### Example

The standard presentation of  $B_n$  is right-complemented

$$\left\langle \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{cc} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{for} & |i-j| \ge 2 \\ \sigma_{i}\sigma_{j}\sigma_{j} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{for} & |i-j| = 1 \end{array} \right\rangle$$

If |i-j| = 1,  $\theta(\sigma_i, \sigma_j) = \sigma_j$  and for  $|i-j| \ge 2$  we have  $\theta(\sigma_i, \sigma_j) = \sigma_j \sigma_i$ .

complemented presentation

#### Example

- The presentation (of monoid)  $\left\langle a, b, c, d, e \middle| \begin{array}{c} ab = cd \\ aeb = ced \end{array} \right\rangle$  (of monoid) is not right-complemented
- 3 The presentation  $\left\langle a, b, c \middle| \begin{array}{c} ab = ba \\ cba = 1 \end{array} \right\rangle$  is not right-complemented
- The presentation of the category of positive quasi-centralisers of the generators in B<sub>n</sub> is right-complemented.
- The presentation (of monoid) (a,b|ab<sup>n</sup> = b<sup>n+1</sup>)<sup>+</sup> is right-complemented but not left-complemented.

Note that if the category  ${\mathscr C}$  possesses a complemented presentation, it has to be inverse-free.

イロト イポト イヨト イヨト 一日

complemented presentation

Proposition

Assume that  $(S, \mathcal{R})$  is a right-complemented presentation. Then the induction rules

• 
$$\theta^*(s,s) = \varepsilon_y$$
 for  $s$  in  $\mathcal{S}(-,y)$ ,

• 
$$\theta^*(\varepsilon_x, u) = u$$
 and  $\theta^*(u, \varepsilon_x) = \varepsilon_y$  for  $u$  in  $\mathcal{S}^*(x, y)$ 

define a unique minimal extension  $\theta^*$  of  $\theta^*$  into a partial map from  $S^* \times S^*$  to  $S^*$ ; this map is such that  $\theta^*(u, v)$  exists if and only if  $\theta^*(v, u)$  does ( in this case the two word represent morphism in the category)

Here again this is convenient to use a "square" representation.



complemented presentation

### Example

In B<sub>4</sub>, we have 
$$\theta^*(\sigma_1, \sigma_2\sigma_3) = \sigma_2\sigma_1\sigma_3\sigma_2$$
 and  
 $\theta^*(\sigma_2\sigma_3, \sigma_1) = \sigma_1\sigma_2\sigma_3$ 
 $\sigma_2 \qquad \sigma_1 \qquad \sigma_2 \qquad \sigma_3 \qquad \sigma_3 \qquad \sigma_2 \qquad \sigma_3 \qquad \sigma$ 

3

イボト イラト イラト

complemented presentation

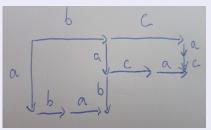
#### Remark

Even if  $\theta : S \times S \rightarrow S^*$  is a map,  $\theta^* : S^* \times S^* \rightarrow S^*$  can be a partial map.

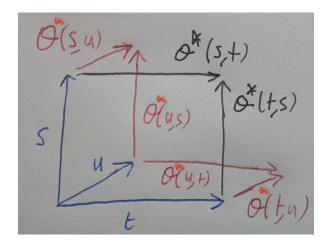
#### Example

Consider the affine Braid group of type  $\tilde{A}_2$ . Its presentation is

$$\left\langle a,b,c \middle| \begin{array}{rrr} aba & = & bab \\ cbc & = & bcb \\ aca & = & cac \end{array} \right\rangle$$

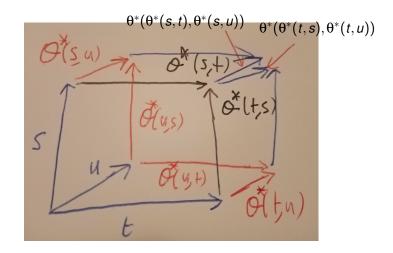


 $\theta$  cube condition



イロト イロト イヨト

 $\theta$  cube condition



э

< D > < B

Presentation

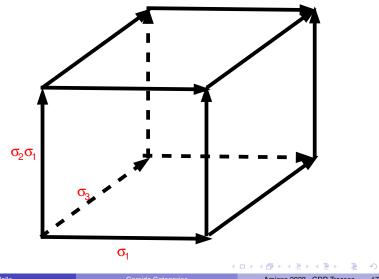
#### Example

The category  $\mathscr{C}$  of positive quasi-centralisers of the generators in  $B_4$  has a presentation with the already seen atom set and the defining relations :

• 
$$ln \mathscr{C}(\sigma_1, \cdot)$$
  
(a)  $\sigma_1 \sigma_3 = \sigma_3 \sigma_1;$   
(b)  $\sigma_1 \cdot \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \cdot \sigma_2;$   
(c)  $\sigma_2 \sigma_1 \cdot \sigma_3 \sigma_2 \cdot \sigma_1 = \sigma_3 \cdot \sigma_2 \sigma_1 \cdot \sigma_3 \sigma_2$   
(a)  $\sigma_1 \sigma_3 = \sigma_3 \sigma_1;$   
(b)  $\sigma_3 \cdot \sigma_2 \sigma_3 = \sigma_2 \sigma_3 \cdot \sigma_2;$   
(c)  $\sigma_2 \sigma_3 \cdot \sigma_1 \sigma_2 \cdot \sigma_3 = \sigma_1 \cdot \sigma_2 \sigma_3 \cdot \sigma_1 \sigma_2$   
(a)  $\sigma_2 \cdot \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \cdot \sigma_1;$   
(b)  $\sigma_2 \cdot \sigma_3 \sigma_2 = \sigma_2 \sigma_3 \cdot \sigma_3;$   
(c)  $\sigma_3 \sigma_2 \cdot \sigma_1 \cdot \sigma_2 \sigma_3 = \sigma_1 \sigma_2 \cdot \sigma_3 \cdot \sigma_2 \sigma_1$ 

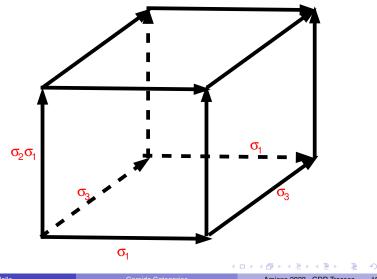
э

 $\boldsymbol{\theta}$  cube condition



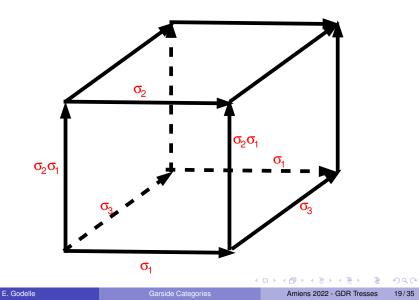
E. Godelle

 $\boldsymbol{\theta}$  cube condition

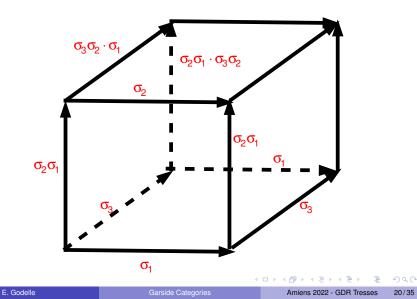


E. Godelle

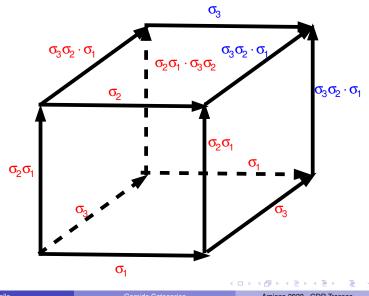
 $\theta$  cube condition



 $\theta$  cube condition



 $\boldsymbol{\theta}$  cube condition



E. Godelle

 $\boldsymbol{\theta}$  cube condition

#### Definition

Assume that  $(\mathcal{S}, \mathcal{R})$  is a right-complemented presentation of a category.

• We say that a triple (u, v, w) of *S*-paths satisfies the sharp  $\theta$ -cube condition if either both  $\theta^*(\theta^*(s,t), \theta^*(s,u))$  and  $\theta^*(\theta^*(t,s), \theta^*(t,u))$  are defined and they are equal, or neither is defined.

**2** We say that a triple (u, v, w) of S-paths satisfies the  $\theta$ -cube condition if either both  $\theta^*(\theta^*(s, t), \theta^*(s, u))$  and  $\theta^*(\theta^*(t, s), \theta^*(t, u))$  are defined and they are equivalent, or neither is defined.

 $\theta$  cube condition

### Proposition

Assume that  $(S, \mathcal{R})$  is a right-complemented presentation of a category  $\mathscr{C}$ . Assume that one of the following case hold.

- (S, R) is short and the sharp θ-cube condition holds for every triple of pairwise distinct elements of S.

Then

- C is left-cancellative.
- C admits conditional right lcms.
- Any two words u, v in S\* represent the same element in C if and only if θ\*(u, v) and θ\*(v, u) exists and are empty.

 $\boldsymbol{\theta}$  cube condition

#### Example

The above result can be applied in the following case

- The presentation of a Artin-Tits monoids of any type.
- the presentation of the category of positive quasi-centralisers of the generators in B<sub>n</sub>.

• • = • • = •

The case of Artin groups

#### Proposition

Let (W, S) be a Coxeter system. Consider the monoid  $B^+$  defined by the following presentation

$$\langle \underline{w}, w \in W \mid \underline{w} \, \underline{w'} = \underline{ww'} \text{ if } \ell_{\mathcal{S}}(ww') = \ell(w) + \ell(w') \rangle$$

Then  $B^+$  is the Artin monoid associated with W and the set {underlinew,  $w \in W$ } is a Garside family of W.

So we want to extend this situation in the framework of categories.

向下 イヨト イヨ

### Definition

A (left-associative) germ is a triple  $(S, 1_S, \bullet)$  where

- S is a precategory
- 2  $1_S$  is a subfamily of S consisting for each object x of an element  $1_x$  with source and target x.
- ${f 0}$  is a partial map from  ${\cal S}^{[2]}$  into  ${\cal S}$  such that
  - (a) it respects source and target maps.
  - (b) for all s in  $\mathcal{S}(x, y)$  one has  $1_x \bullet s = s = s \bullet 1_y$ .
  - (c) if *r s* and *s t* are defined then (*r s*) *t* is defined if and only if *r* (*s t*) is defined and in this case they are equal.
  - (d) for any r, s, t in S, if  $r \cdot s$  and  $(r \cdot s) \cdot t$  are defined then  $s \cdot t$  is defined.

#### Example

Consider the precategory  $\Sigma_3$  with one object  $\star$  defined by  $\Sigma_3 = \{1, \sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_2 \sigma_1 \sigma_2\}$  and defined  $s \bullet t$  by

| ۲,                           | 1                            | σ <sub>1</sub>               | σ <sub>2</sub>               | $\sigma_1 \sigma_2$          | $\sigma_2 \sigma_1$          | $\sigma_2 \sigma_1 \sigma_2$ |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 1                            | 1                            | σ <sub>1</sub>               | $\sigma_2$                   | $\sigma_1 \sigma_2$          | $\sigma_2 \sigma_1$          | $\sigma_2 \sigma_1 \sigma_2$ |
| σ <sub>1</sub>               | σ <sub>1</sub>               | —                            | $\sigma_1 \sigma_2$          | —                            | $\sigma_2 \sigma_1 \sigma_2$ | —                            |
| σ <sub>2</sub>               | σ <sub>2</sub>               | $\sigma_2 \sigma_1$          | —                            | $\sigma_2 \sigma_1 \sigma_2$ | —                            | —                            |
| $\sigma_1 \sigma_2$          | $\sigma_1 \sigma_2$          | $\sigma_2 \sigma_1 \sigma_2$ | —                            | —                            | —                            | —                            |
| $\sigma_2 \sigma_1$          | $\sigma_2 \sigma_1$          | —                            | $\sigma_2 \sigma_1 \sigma_2$ | —                            | —                            | —                            |
| $\sigma_2 \sigma_1 \sigma_2$ | $\sigma_2 \sigma_1 \sigma_2$ | _                            | _                            | _                            | _                            | —                            |

Then  $(\Sigma_3, 1_*, \bullet)$  is an associative germ.

3

ロト イポト イヨト イヨト

### Definition

Assume  $(\mathcal{S}, 1_{\mathcal{S}}, \bullet)$  is an associative germ. The associated category  $Cat(\mathcal{S}, 1_{\mathcal{S}}, \bullet)$  is defined by the presentation  $\langle \mathcal{S} | R \rangle$  where *R* is the set of relations fg = h such that f, g, h are in  $\mathcal{S}$  and  $f \bullet g = h$  holds in  $\mathcal{S}$ .

#### Example

Consider the associative germ of previous example. Then

$$\textit{Cat}(\Sigma_3, 1_{\star}, \bullet) = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$$

#### Proposition

If S is a solid Garside family in a inverse-free left cancellative category C, then S equiped with the induced partial product is an associative germ and the induced category Cat(S) is isomorphic to C.

#### Definition

Consider a left-associative germ  $(S, 1_S, \bullet)$ . For a *S*-path  $s_1 | s_2$  in *S*, set

$$\mathcal{I}(\boldsymbol{s}_1, \boldsymbol{s}_2) = \{t \in \mathcal{S} \mid \exists \boldsymbol{s}, \boldsymbol{s}' \in \mathcal{S} \text{ such that } t = \boldsymbol{s}_1 \bullet \boldsymbol{s} \text{ and } \boldsymbol{s}_2 = \boldsymbol{s} \bullet \boldsymbol{s}'\}$$

A map  $I : S | S \to S$  is said to be a  $\mathcal{I}$ -map if the image of any  $s_1 | s_2$ , lies in  $\mathcal{I}(s_1, s_2)$ .

#### Definition

A left associative germ  $(S, 1_S, \bullet)$  is a Garside germ if it is left-cancellative and there exists a  $\mathcal{I}$ -map  $I : S \mid S \to S$  such that for any  $s_1 \mid s_2 \mid s_3$ 

$$s_1 \bullet s_2$$
 is defined  $\Rightarrow l(s_1, l(s_2, s_3)) = l(s_1 \bullet s_2, s_3)$ 

#### Proposition

If  $(S, 1_S, \bullet)$  is a Garside germ, then S is solid Garside family of the left cancellative category Cat(S).

E. Godelle

Garside Categories

#### Proposition

A right-Noetherian left-cancellative left-associative germ S is a Garside germ if and only if S and satisfies the following property.

For any  $s_1 | s_2$ , any two elements of  $\mathcal{J}(s_1, s_2)$  possesses a common right *S*-multiple that lies in  $\mathcal{J}(s_1, s_2)$ .

When these conditions are met, the category  $Cat(\underline{S})$  is right-Noetherian.

#### Proposition

A associative right-Noetherian left-cancellative germ S that admits right-lcms is a Garside germ.

イロト イロト イヨト イヨト

#### Definition

- A Garside monoid is a pair  $(M, \Delta)$  where M is a monoid such that
- M is left- and right-cancellative,
- there exists  $\lambda : M \to \mathbb{N}$  satisfying  $\lambda(fg) \ge \lambda(f) + \lambda(g)$  and  $g \neq 1 \Rightarrow \lambda(g) \neq 0$ ,
- any two elements of *M* have a left- and a right-lcm and a left- and a right-gcd,
- $\Delta$  is a *Garside element* of *M*, this meaning that the left- and right-divisors of  $\Delta$  coincide, generate *M*, and are finite in number.

In the case of a Garside monoid, the Garside family, and the category possess extra properties. Certainly this situation extends to category context : and lead to the notion of Bounded Garside families.

#### Definition

Assume that  $\mathscr{C}$  is an inverse free left-cancellative category and  $\mathcal{S}$  is a Garside family in  $\mathscr{C}$  that is closed under left-divisor. We say that  $\mathcal{S}$  is right-bounded by a map  $\Delta : Obj(\mathscr{C}) \to \mathscr{C}$  when for each object *x* the morphism  $\Delta(x)$  lies in  $\mathcal{S}$  and is the common right-multiple of  $\mathcal{S}(x, \cdot)$ . In this case, we say that  $\Delta$  is a right-Garside map.

### Definition

Assume that  $\mathscr{C}$  is an inverse free left-cancellative category and  $\mathcal{S}$  is a Garside family in  $\mathscr{C}$  that is closed under left-divisor. Then a map  $\Delta : Obj(\mathscr{C}) \to \mathscr{C}$  is a right Garside map if and only of the following condition hold

- $Div(\Delta)$  generates  $\mathscr{C}$
- $iv_R(\Delta) \subseteq \operatorname{Div}(\Delta)$

Solution for every g in  $\mathscr{C}(x, \cdot)$ , the elements g and  $\Delta(x)$  admit a left gcd.

- 3

イロト イロト イヨト イヨト

### Example

Let  $n \ge 1$  and  $L_n = \langle a, b | ab^n = b^{n+1} \rangle^+$ . Set  $S = \{1, a, b, b^2, \dots, b^{n+1}\}$ . Then S is right-bounded by  $b^{n+1}$ .

Assume  $\mathscr{C}$  is an inverse free left-cancellative category and  $\mathcal{S}$  is a Garside family in  $\mathscr{C}$  that is closed under left-divisor. Assume that a right Garside map  $\Delta : Obj(\mathscr{C}) \to \mathscr{C}$  exists. For *s* in  $\mathcal{S}(x, \cdot)$  we denote by  $\partial(s)$  the unique element so that  $\Delta(x) = s\partial(s)$ .

Note that for every  $s \in S(x, y)$  we have  $s\Delta(y) = s\partial(s)\partial^2(s) = \Delta(x)\partial^2(s)$ .

### Proposition

Under the above assumption there exists a unique functor  $\phi_\Delta:\mathscr{C}\to\mathscr{C}$  that extend  $\partial^2.$ 

Rem : This functor is not an automorphism in general. For instance in previous example we have  $a \cdot b^{n+1} = b^{n+1} \cdot b$  and  $b \cdot b^{n+1} = b^{n+1} \cdot b$ 

#### Definition

Assume that  $\mathscr{C}$  is an inverse free left-cancellative category and  $\mathcal{S}$  is a Garside family in  $\mathscr{C}$  that is closed under left-divisor. The family  $\mathcal{S}$  is said to be bounded by  $\Delta : Obj(\mathscr{C}) \to \mathscr{C}$  when

- $\Delta$  is a right Garside map
- **2** Every *s* in *S* right-divides  $\Delta$  ( $\exists r \in S(x, \cdot)$  so that  $\Delta(x) = rs$ ).

#### Proposition

if  $\mathscr{C}$  is an inverse free left-cancellative category that possesses a bounded Garside family that it admits common left multiples.

イロト イロト イヨト イヨト

### Proposition

Assume that  $\mathscr{C}$  is an inverse free left-cancellative category with <u>finite</u> object set and S is a <u>finite</u> Garside family in  $\mathscr{C}$  that is closed under left-divisor.

if S is right-bounded by a target-injective map  $\Delta$  then S is bounded by  $\Delta$  and  $\phi_{\Delta}$  is an automorphism.

#### Proposition

Assume that  $\mathscr{C}$  is an inverse free <u>cancellative</u> left-noetherian category and S is a Garside family closed under left-divisor. and bounded by a target-injective  $\Delta$  map then

- S is bounded and  $\phi_{\Delta}$  is an automorphism.
- **2**  $Div(\Delta)$  and  $Div_R(\Delta)$  coincide.
- If admits left and right gcds
- Image: Second States States
- ${f 0}$   ${\mathscr C}$  is a lattice for both right and left divisibility.