E. Godelle

Bielefeld - September 2024 - 1/2

- Lecture 1 : Why should we care about Cactus groups?
- Lecture 2 : What can we say about Cactus groups?

References :

- [D] Devadoss S. Tessellations of moduli spaces and the mosaic operad. Contemp. Math. 239 (1999), 91-114.
- [DJS] Davis, M., Januszkiewicz, T. and Scott, R. Fundamental groups of blow-ups. Adv. Math. 177 (2003), 115-179.
 - [HK] Henriques, A. and Kamnitzer, J. *Crystals and coboundary categories.* Duke Math. 132 (2006), 191-216.
 - [S] Savage, A. Braided and coboundary monoidal categories Contemp. Math., 483 (2009), 229-251.
 - [B] Bonnafé, C. Cells and cacti. Int. Math. Res. Not. (2015) 5775 5800.
 - [M] Mostovoy J., *The pure cactus group is residually nilpotent* Arch. Math. 113 (2019) 229-235.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Introduction and motivations

Braid groups

Cactus groups are closed to Braid groups, symmetric groups and RAA(C)G. The braid group on n+1 strands B_{n+1} admits the following presentation

Cactus groups associated with parabolic subgroups Symmetric groups

The Symmetric group on \mathfrak{S}_{n+1} admits the following presentation

$$\left\langle s_{1}, \dots, s_{n} \middle| \begin{array}{c} s_{i}s_{j} = s_{j}s_{i} & \text{for} \quad |i-j| \ge 2\\ s_{i}s_{j}s_{i} = s_{j}s_{i}s_{j} & \text{for} \quad |i-j| = 1\\ s_{i}^{2} = 1 \end{array} \right\rangle$$

(2)

We have the exact sequence

$$1 \to PB_{n+1} \to B_{n+1} \xrightarrow{\Upsilon} \mathfrak{S}_{n+1} \to 1$$

Where PB_{n+1} is the pur braid group and σ_i is sent to $\Upsilon(\sigma_i) = s_i$.

Cactus groups

The Cactus group J_{n+1} admits the following presentation

$$\left\langle \tau_{p,q}; 1 \leqslant p < q \leqslant n+1 \middle| \begin{array}{cc} \tau_{p,q}\tau_{m,r} = \tau_{m,r}\tau_{p,q} & \text{for}[p,q] \cap [m,r] = \emptyset \\ \tau_{p,q}\tau_{m,r} = \tau_{m',r'}\tau_{p,q} & \text{for}[m,r] \subset [p,q] \\ \tau_{p,q}^2 = 1 \end{array} \right\rangle \quad (3)$$

where m' + r = r' + m = p + q.

We have a diagram interpretation due to Mostovoy ([M])

We have an exact sequence : $1 \rightarrow PJ_{n+1} \rightarrow J_{n+1} \rightarrow \mathfrak{S}_{n+1} \rightarrow 1$. Where PJ_{n+1} is the pur cactus group and θ sends $s_{p,q}$ on $\omega_{p,q} = s_p(s_{p+1}s_p)\cdots(s_{q-1}\cdots s_p)$. We have $m' = \omega_{p,q}(r)$ and $r' = \omega_{p,q}(m)$ (one reverses intervals).

Cactus groups and coboundary categories

Definition

A (strict) monoidal category is a triple (C, \otimes, I) where C is a category and $\otimes : C \times C \to C$ is an associative bifunctor with an identity object *I*.

Example

The category of sets can be turned into a monoidal categories using the cartesian product or the disjoint union.

Example

The category of vector spaces on a field $\mathbb K$ can be turned into a monoidal category using the direct product.

イロン イボン イヨン イヨン 三日

Cactus groups and coboundary categories

Definition

A monoidal category $(\mathcal{C}, \otimes, I)$ is braided category if for any objects A, B there is a given isomorphism $\sigma_{A,B} : A \otimes B \to B \otimes A$ so that the following is commutative.

$$\sigma_1 = \sigma_{..} \otimes Id$$
. and $\sigma_2 = Id \otimes \sigma_{..}$

E. Godelle

Cactus groups and coboundary categories

Proposition

Let (C, \otimes, I) be a braided category, for any objects A_1, \dots, A_{n+1} of C and any braid σ in B_{n+1} there is a well defined isomorphism

$$\sigma_{A_1,\cdots,A_{n+1}}:A_1\otimes A_2\otimes\cdots\otimes A_{n+1}\to A_{\hat{\sigma}(1)}\otimes A_{\hat{\sigma}(2)}\otimes\cdots\otimes A_{\hat{\sigma}(n+1)}$$

with $\hat{\sigma} = \Upsilon(\sigma)$ so that

$$(\sigma\sigma')_{\mathcal{A}_1,\cdots,\mathcal{A}_{n+1}} = \sigma'_{\mathcal{A}_{\hat{\sigma}(1)},\cdots,\mathcal{A}_{\hat{\sigma}(n+1)}} \circ \sigma_{\mathcal{A}_1,\cdots,\mathcal{A}_{n+1}}$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト … 臣

Cactus groups and coboundary categories

Definition

A monoidal category $(\mathcal{C}, \otimes, I)$ is a coboundary category if for any two objects A, B there is a (fixed) isomorphism $\tau_{A,B} : A \otimes B \to B \otimes A$ so that $\tau_{A,B} \circ \tau_{B,A} = Id$ and the following diagram is commutative.

9/26

Coboundary categories were introduced by Drinfel'd (1990) in its study of coboundary Hopf algebras. They were associated to Crystal in [HK] = = = E. Godelle Castus groups associated with parabolic subgroups Bielefeld - September 2024 - 1/2

Cactus groups and coboundary categories

V, (u,w)) (v, u), w(W, (V, W)) (V, (w, u))(U, v), w(v,w), (1) $(\gamma (v, w))$ (u,(w,v))([w, v), u)) $\longrightarrow (W, (u, v))$ $((U, W), V) \longrightarrow ((W, U), V)$

Cactus groups and coboundary categories

Definition

Consider a coboundary category (C, \otimes, I) for $1 \le p < q \le n+1$ and objects $A_1, \dots A_{n+1}$, we set

$$\tilde{\tau}_{p,q,(A_1\cdots,A_{n+1})} = \mathit{Id}_{A_1\otimes\cdots\otimes A_{p-1}} \otimes \tau_{A_p,A_{p+1}\otimes\cdots\otimes A_q} \otimes \mathit{Id}_{A_{q+1}\otimes\cdots\otimes A_{n+1}}$$

from
$$A_1 \otimes \cdots \otimes A_{n+1}$$
 to
 $A_1 \otimes \cdots \otimes A_{p-1} \otimes A_{p+1} \otimes \cdots \otimes A_q \otimes A_p \otimes A_{q+1} \otimes \cdots \otimes A_{n+1}$

So $\tilde{\tau}_{1,2,A,B} = \tau_{A,B} : A \otimes B \to B \otimes A$.

Definition

•
$$\tau_{p,p+1,*} = \tilde{\tau}_{p,p+1,*} = Id \otimes \tau_{A_p,A_{p+1}} \otimes Id.$$

• $\tau_{p,q,*} = \hat{\tau}_{p,q,*} \circ \tau_{p+1,q,*}$ for $q > p+1$.

Cactus groups and coboundary categories

Proposition ([HK])

we have

$$\begin{split} & \tau_{\rho,q,*}\tau_{m,r,*} = \tau_{m,r,*}\tau_{\rho,q,*} \quad \text{for} \quad [p,q] \cap [m,r] = \emptyset; \\ & \tau_{\rho,q,*}\tau_{m,r,*} = \tau_{m',r',*}\tau_{\rho,q,*} \quad \text{for} \quad [m,r] \subset [p,q]; \\ & \tau_{\rho,q,*}^2 = 1. \end{split}$$

Proposition

Let (C, \otimes, I) be a coboundary category. For any objects A_1, \dots, A_{n+1} of C and any cactus τ in J_{n+1} there is a well defined (natural) isomorphism

$$\mathcal{L}_{A_1,\cdots,A_{n+1}}: A_1 \otimes A_2 \otimes \cdots \otimes A_{n+1} \to A_{\hat{\mathfrak{t}}(1)} \otimes A_{\hat{\mathfrak{t}}(2)} \otimes \cdots \otimes A_{\hat{\mathfrak{t}}(n+1)}$$

with $\hat{\tau} = \theta(\tau) \in \mathfrak{S}_{n+1}$ so that

$$(\tau \tau')_{\mathcal{A}_1, \cdots, \mathcal{A}_{n+1}} = \tau'_{\mathcal{A}_{\hat{\tau}(1)}, \cdots, \mathcal{A}_{\hat{\tau}(n+1)}} \circ \tau_{\mathcal{A}_1, \cdots, \mathcal{A}_{n+1}}$$

Cactus groups and configuration space

Definition

Let X_n be the configuration space of n+1 points on the circle, that on $\mathbb{RP}^1 = \mathbb{R} \cup \{\infty\}$.

$$X_n = \left((\mathbb{P}^1)^{n+1} \setminus \Delta \right) \middle/ PGL_2(\mathbb{R})$$

Let $M_n = \overline{M}_{0,n+1}(\mathbb{R})$ be the Deligne-Munford compactification of X_n .

Example In M_3 $4 \xrightarrow{2}{} \longrightarrow 4 \xrightarrow$

イロト イロト イヨト イヨト

Cactus groups and configuration space

An element of M_n is a circle that is possibly degenerate with a finite set of double points such that :

- double points are distincts from the marked points.
- the graph of the components is a tree.
- the automorphism group of the curve is trivial
- on each component there is at least three points which are either marked or double.

A element of M_7 : a cactus

Cactus groups and configuration space

Proposition

 M_n is a smooth compact manifold of dimension n-2

Cactus groups and configuration space

Cactus groups and configuration space

Proposition ([DJS])

$$1 \pi_1(M_n) = PJ_n$$

2 for
$$i \ge 2$$
, $\pi_i(M_n) = \{1\}$

3 × 1

Cactus groups and configuration space

 $(01234) \rightarrow (001234) = (0(3214) \rightarrow (03214))$

Cactus groups and Coxeter groups

Definition

A Coxeter graph Γ is a finite simple labeled graph (V, E, m) where the labeled map *m* takes her values in $\{3, 4, ...\} \cup \{\infty\}$. The associated Coxeter group W_{Γ} is defined by the following presentation with generating set *V*:

$$W = \left\langle V \middle| \begin{array}{c} s^2 = 1 & ; \quad s \in V \\ sts \dots = tst \dots & ; \quad \{s,t\} \in E \text{ and } m(s,t) \neq \infty \end{array} \right\rangle$$

The length of an element of W_{Γ} is the minima possible length of one of its word representative on *V*.

Example

The Coxeter group associated with the linear graph with *n* vertices is the symmetric group \mathfrak{S}_{n+1} . The associated Artin group is the braid group B_{n+1} . The length of an element correspond to its number of inversions.

Cactus groups and Coxeter groups

Proposition

When the Coxeter group W_{Γ} is finite and irreducible (that Γ is connected), then

• it possesses a unique element of maximal length ω_V .

3 we have
$$\omega_V V \omega_V^{-1} = V$$
 and $\omega_V^2 = 1$.

Example

In the symmetric group \mathfrak{S}_{n+1} , we have

• $\omega_V = s_1(s_2s_1)\cdots(s_n\cdots s_1).$

イロト イポト イヨト イヨト

- 3

Cactus groups and Coxeter groups

Proposition

Consider the Coxeter group W_{Γ} associated with $\Gamma = (V, E, m)$. For $X \subseteq V$, the subgroup W_X of W_{Γ} is a Coxeter group associated with the full subgraph of Γ spanned by X: the morphism $W_{\Gamma_X} \to W_{\Gamma}, s \in X \mapsto s \in V$ is into.

Proposition

For
$$X \subset V$$
 we have $\omega_V \omega_X \omega_V^{-1} = \omega_Y$ and $\omega_V W_X \omega_V^{-1} = W_Y$ with $\omega_V X \omega_V^{-1} = Y$

- 3

Cactus groups and Coxeter groups

Definition

Consider W_{Γ} associated with $\Gamma = (V, E, m)$. Let F be the set of not empty subsets X of V so that W_X is irreducible and finite. The cactus $C(W_{\Gamma})$ is defined by the presentation of group with F for generating set and the defining (c1) $c_X^2 = 1$; $X \in F$ relation : (c2) $c_X c_Y = c_{\omega_X(Y)} c_X$; $Y \subset X$ and $\omega_X(Y) = \omega_X Y \omega_X^{-1}$ (c3) $c_Y c_X = c_X c_Y$; $Y \cap X = \emptyset$ and $W_{X \cup Y}$ not irreducible

Example

 J_n is the cactus group $C(\mathfrak{S}_n)$ associated with the symmetric group \mathfrak{S}_n .

Proposition

For any Coxeter group W, the map $c_X \mapsto \omega_X$ induces an exact sequence

$$1
ightarrow PC(W)
ightarrow C(W)
ightarrow W
ightarrow 1$$

Dual cactus groups

Definition

Let (W, S) be a finite Coxeter system. By T denote its set of reflections. Fix a Coxeter element c.

Then (W, T, c) is a dual Coxeter system. An element δ of W is parabolic relatively to c if $\ell_T(w) + \ell_T(w^{-1}c) = \ell_T(c)$.

Example

in the symmetric group \mathfrak{S}_{n+1} , the element $s_1 \cdots s_n$ is a Coxeter element.

• • = • • = •

Dual cactus groups

Proposition

Let $t_1 \cdots t_k = \delta$ be a decomposition over T of a parabolic element δ with $k = \ell_T(\delta)$. Then

- The subgroup W_{δ} of W generated by t_1, \dots, t_k depends on δ only.
- **2** $(W_{\delta}, T \cap W_{\delta}, \delta)$ is a dual Coxeter system.

There is a natural partial order on the set of parabolic elements relatively to *c* and a notion of irreducible parabolic elements.

(E) < E)</p>

Cactus groups and Coxeter groups

Question

- What can be said about Cactus groups?
- Output: A constraint of the second second
- Is there a notion of dual Cactus groups ?

$$s_1(s_2s_1)\cdots(s_n\cdots s_1) \rightarrow s_n\cdots s_1$$

$$S \rightarrow T$$

3

Cactus groups and Coxeter groups

Answers : next talk Thanks !