Garside groups and the Yang-Baxter equation

Fabienne Chouraqui

Bar-Ilan University

June, 2010

Fabienne Chouraqui (Bar-Ilan) Garsie

Garside groups and Yang-Baxter equation

June, 2010 1 / 24

ъ

First version of the paper: Arxiv Nov' 2008

"Set-theoretical" solutions of the quantum Yang-Baxter equation and a class of Garside groups

To appear in Communications in Algebra

Garside groups and the Yang-Baxter equation

First version of the paper: Arxiv Nov' 2008

"Set-theoretical" solutions of the quantum Yang-Baxter equation and a class of Garside groups

To appear in Communications in Algebra

Garside groups and the Yang-Baxter equation

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space. The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

- V is a vector space spanned by a set X.
- *R* is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$.

< ロ > < 同 > < 回 > < 回 >

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space. The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

• V is a vector space spanned by a set X.

• *R* is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$.

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space. The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

• V is a vector space spanned by a set X.

• *R* is the linear operator induced by a mapping $S: X \times X \rightarrow X \times X$.

Let $R: V \otimes V \to V \otimes V$ be a linear operator, where V is a vector space. The QYBE is the equality $R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}$ of linear transformations on $V \otimes V \otimes V$, where R^{ij} means R acting on the i-th and j-th components.

A set-theoretical solution (X, S) of this equation [Drinfeld]

- V is a vector space spanned by a set X.
- *R* is the linear operator induced by a mapping
 S : *X* × *X* → *X* × *X*.

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

• (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X,S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X, S) is involutive $\Leftrightarrow S^2 = Id_{X \times X}$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X,S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.
- (X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X,S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.
- (X,S) is braided $\Leftrightarrow S^{12}S^{23}S^{12} = S^{23}S^{12}S^{23}$

Let $X = \{x_1, ..., x_n\}$ and let S be defined in the following way: $S(i, j) = (g_i(j), f_j(i))$, where $f_i, g_i : X \to X$.

Proposition [Etingof, Schedler, Soloviev - 1999]

- (X, S) is non-degenerate $\Leftrightarrow f_i$ and g_i are bijective, $1 \le i \le n$.
- (X,S) is involutive $\Leftrightarrow g_{g_i(j)}f_j(i) = i$ and $f_{f_j(i)}g_i(j) = j$, $1 \le i, j \le n$.
- (X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: the elements of X
- The defining relations: $x_i x_j = x_k x_l$ whenever S(i, j) = (k, l)

There are exactly
$$\frac{n(n-1)}{2}$$
 relations.

A (1) > A (2) > A

Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

• The generators: the elements of X

• The defining relations: $x_i x_j = x_k x_l$ whenever S(i, j) = (k, l)

There are exactly
$$\frac{n(n-1)}{2}$$
 relations.

A (10) A (10)

Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: the elements of X
- The defining relations: $x_i x_j = x_k x_l$ whenever S(i, j) = (k, l)

There are exactly $\frac{n(n-1)}{2}$ relations.

A (1) > A (2) > A

Assumption: (X, S) is a non-degenerate, involutive and braided solution.

The structure group G of (X, S) [Etingof, Schedler, Soloviev]

- The generators: the elements of X
- The defining relations: $x_i x_j = x_k x_l$ whenever S(i, j) = (k, l)

There are exactly
$$\frac{n(n-1)}{2}$$
 relations.

The example

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}.$$

The functions that define S

Let $f_1 = g_1 = (1, 2, 3, 4)(5)$ $f_2 = g_2 = (1, 4, 3, 2)(5)$ $f_3 = g_3 = (1, 2, 3, 4)(5)$ $f_4 = g_4 = (1, 4, 3, 2)(5)$ $f_5 = g_5 = (1)(2)(3)(4)(5)$

 $\left(X,S\right)$ is a non-degenerate, involutive and braided solution.

The defining relations in G and in M (the monoid with the same pres.)

$$x_1^2 = x_2^2$$
 $x_3^2 = x_4^2$

$$x_1x_2 = x_3x_4$$
 $x_1x_5 = x_5x_1$

$$x_1x_3 = x_4x_2$$
 $x_2x_5 = x_5x_2$

$$x_2x_4 = x_3x_1$$
 $x_3x_5 = x_5x_3$

 $x_1 = x_4 x_3 \qquad x_4 x_5 = x_5 x$

The example

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}.$$

The functions that define S

Let
$$f_1 = g_1 = (1, 2, 3, 4)(5)$$

 $f_2 = g_2 = (1, 4, 3, 2)(5)$
 $f_3 = g_3 = (1, 2, 3, 4)(5)$
 $f_4 = g_4 = (1, 4, 3, 2)(5)$
 $f_5 = g_5 = (1)(2)(3)(4)(5)$

 $\left(X,S\right)$ is a non-degenerate, involutive and braided solution.

The defining relations in G and in M (the monoid with the same pres.)

$$\begin{array}{rl} x_1^2 = x_2^2 & x_3^2 = x_4^2 \\ x_1x_2 = x_3x_4 & x_1x_5 = x_5x_1 \\ x_1x_3 = x_4x_2 & x_2x_5 = x_5x_2 \\ x_2x_4 = x_3x_1 & x_3x_5 = x_5x_3 \\ x_2x_1 = x_4x_3 & x_4x_5 = x_5x_4 \end{array}$$

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

A (10) A (10) A (10)

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Sketch of the proof: Recognizing Garside monoids [P.Dehornoy 2002]

A monoid \boldsymbol{M} is Garside if and only if

- M is atomic.
- *M* is right cancellative.
- *M* satisfies the right cube condition on the set of atoms.
- *M* has a finite generating set *S* closed under complement, that is if $U, V \in S$ then the complement $U \setminus V$ is in *S*.

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Sketch of the proof

• Expressing $x_i \setminus x_j$ in terms of the functions g_i : Let x_i, x_j be different elements in X. Then $x_i \setminus x_j = g_i^{-1}(j)$.

In a dual way, $x_i \widetilde{X}_j = f_j^{-1}(i)$.

< 回 > < 三 > < 三 >

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Sketch of the proof

- Expressing $x_i \setminus x_j$ in terms of the functions g_i : Let x_i, x_j be different elements in X. Then $x_i \setminus x_j = g_i^{-1}(j)$.
- The right cube condition is satisfied on X.

< 回 > < 回 > < 回 >

Theorem A: The converse

Assume that $Mon\langle X | R \rangle$ is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2, where n is the cardinality of X.
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in *R*, then it appears only once.

A (1) > A (2) > A (2)

Theorem A: The converse

Assume that Mon(X | R) is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2, where n is the cardinality of X.
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once. Then there exists a function $S: X \times X \to X \times X$ such that
 - (*X*, *S*) is a non-degenerate, involutive and braided set-theoretical solution.
 - $G = \operatorname{Gp}\langle X \mid R \rangle$ is its structure group.

不得る 不良る 不良る

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in R, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive. Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

(X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n$.

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in *R*, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive. Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

(X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in *R*, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive. Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

(X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in *R*, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive.

Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

(X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n.$

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in *R*, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive. Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

(X, S) is braided $\Leftrightarrow g_i g_j = g_{g_i(j)} g_{f_j(i)}$ and $f_j f_i = f_{f_j(i)} f_{g_i(j)}$ and $f_{g_{f_j(i)}(k)} g_i(j) = g_{f_{g_j}(k)}(i) f_k(j), 1 \le i, j, k \le n$.

Definition of (X, S) non-degenerate and involutive

- For each relation $x_i x_j = x_k x_l$ in *R*, define $S(x_i, x_j) = (x_k, x_l)$.
- (X, S) is non-degenerate, since $Mon\langle X | R \rangle$ is Garside.
- (X, S) is involutive, since each $x_i x_j$ in R appears only once.

Proof of (X, S) braided

Assume (X, S) is non-degenerate and involutive. Then (X, S) is braided if and only if the right cube condition and the left cube condition are satisfied on X.

$$\begin{array}{l} (X,S) \text{ is braided } \Leftrightarrow g_ig_j = g_{g_i(j)}g_{f_j(i)} \text{ and } f_jf_i = f_{f_j(i)}f_{g_i(j)} \\ \text{and } f_{g_{f_j(i)}(k)}g_i(j) = g_{f_{g_j(k)}(i)}f_k(j), \ 1 \leq i,j,k \leq n. \end{array}$$

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element.
- The Garside element has length n.

• The (co)homological dimension of the structure group *G* is *n*. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element.
- The Garside element has length n.

 The (co)homological dimension of the structure group G is n. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element.
- The Garside element has length n.

• The (co)homological dimension of the structure group *G* is *n*. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Assume the cardinality of X is n. Then

- The right lcm of the generators is a Garside element.
- The Garside element has length n.
- The (co)homological dimension of the structure group G is n. [P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey 2004] [J. McCammond]
Who are the simples?

A simple element s is a right lcm of some subset of generators Y.
The set of simples χ is equal to X̄[∨] ∪ {1}.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :
 - $\blacktriangleright M \setminus x \subseteq X \cup \{1\}.$
 - $M \setminus (\vee_i x_i) \subseteq \overline{X}^{\vee} \cup \{1\}.$

Who are the simples?

• A simple element *s* is a right lcm of some subset of generators *Y*.

• The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

Fabienne Chouraqui (Bar-Ilan)

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :
 - $\blacktriangleright M \setminus x \subseteq X \cup \{1\}.$
 - $M \setminus (\lor_i x_i) \subseteq \overline{X}^{\vee} \cup \{1\}.$

A (1) > A (2) > A

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :
 - $\blacktriangleright M \setminus x \subseteq X \cup \{1\}.$
 - $M \setminus (\lor_i x_i) \subseteq \overline{X}^{\lor} \cup \{1\}.$

A (10) F (10)

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

A (1) > A (2) > A

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$ • $\chi = \overline{X}^{\vee,\vee}$ [P.Dehornoy 2002] • Induction on the number of steps in the construction of χ : • $M \setminus x \subseteq X \cup \{1\}$. • $M \setminus (\vee_i x_i) \subseteq \overline{X}^{\vee} \cup \{1\}$.

A (10) A (10)

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :

 $M \setminus x \subseteq X \cup \{1\}.$ $M \setminus (\lor_i x_i) \subseteq \overline{X}^{\lor} \cup \{1\}$

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :

$$M \setminus x \subseteq X \cup \{1\}.$$

 $A \setminus (\vee_i x_i) \subseteq X^{\vee} \cup \{1\}.$

A (10) A (10) A (10) A

Who are the simples?

- A simple element *s* is a right lcm of some subset of generators *Y*.
- The set of simples χ is equal to $\overline{X}^{\vee} \cup \{1\}$.

Proof of $\chi = \overline{X}^{\vee} \cup \{1\}$

- $\chi = \overline{X}^{\setminus,\vee}$ [P.Dehornoy 2002]
- Induction on the number of steps in the construction of χ :

$$M \setminus x \subseteq X \cup \{1\}.$$

$$M \setminus (\vee_i x_i) \subseteq \overline{X}^{\vee} \cup \{1\}.$$

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

```
• Induction on |Y|
```

- The length of s is less or equal than |Y|.
- $(\lor_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

A (10) F (10)

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

```
• Induction on |Y|
```

- The length of s is less or equal than |Y|.
- $(\lor_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

```
• Induction on |Y|
```

The length of s is less or equal than |Y|.

 $(\vee_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

< ロ > < 同 > < 回 > < 回 >

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

```
Induction on |Y|
```

The length of *s* is less or equal than |Y|. $(\lor_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

- Induction on |Y|
 - The length of s is less or equal than |Y|.
 - $(\lor_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

What is the length of a simple?

- The length of s is equal to |Y|.
- The length of Δ is equal to |X|.

Proof

- Induction on |Y|
 - The length of s is less or equal than |Y|.
 - $(\lor_i x_i) \setminus x_j \neq 1$ (all the x_i, x_j are dft).

A (10) A (10) A (10)

Decomposability of a solution (X, S)

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the QYBE.

Definition

(X,S) is *decomposable* if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X,S) is *indecomposable*.

Theorem (Etingof,Schedler,Soloviev)

(X, S) is indecomposable if and only if *G* acts transitively on *X*, where $x_i \rightarrow g_i^{-1}$ is a right action of *G* on *X*.

Decomposability of a solution (X, S)

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the QYBE.

Definition

(X,S) is *decomposable* if it is the union of two nonempty disjoint non-degenerate invariant subsets. Otherwise, (X,S) is *indecomposable*.

Theorem (Etingof, Schedler, Soloviev)

(X, S) is indecomposable if and only if *G* acts transitively on *X*, where $x_i \rightarrow g_i^{-1}$ is a right action of *G* on *X*.

イロト 不得 トイヨト イヨト

The example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and S as before.

(X,S) is a decomposable solution

- $X = \{x_1, x_2, x_3, x_4\} \cup \{x_5\}.$
- $\{x_1, x_2, x_3, x_4\}$ and $\{x_5\}$ are invariant subsets.

The defining relations in G and in M

A (10) × A (10) × A (10)

The example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and S as before.

(X,S) is a decomposable solution

- $X = \{x_1, x_2, x_3, x_4\} \cup \{x_5\}.$
- $\{x_1, x_2, x_3, x_4\}$ and $\{x_5\}$ are invariant subsets.

The defining relations in G and in M

$x_1^2 = x_2^2$	$x_3^2 = x_4^2$	$(x_5x_5 = x_5x_5)$
$x_1x_2 = x_3x_4$	$x_1x_5 = x_5x_1$	
$x_1x_3 = x_4x_2$	$x_2x_5 = x_5x_2$	
$x_2 x_4 = x_3 x_1$	$x_3x_5 = x_5x_3$	
$x_2 x_1 = x_4 x_3$	$x_4 x_5 = x_5 x_4$	

Our results: Theorem C

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then

(X,S) is indecomposable if and only if G is Δ -pure Garside.

A consequence

If (X,S) is indecomposable then the center of G is cyclic, generated by some exponent of Δ .

[Picantin 2001]

Our results: Theorem C

Theorem

Let (X, S) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then

(X,S) is indecomposable if and only if G is Δ -pure Garside.

A consequence

If (X, S) is indecomposable then the center of G is cyclic, generated by some exponent of Δ .

[Picantin 2001]

Δ -pure Garside monoids [Picantin 2001]

Definition of a Δ -pure Garside monoid

Let M be a Garside monoid. Then M is Δ -pure if for every x, y in X, it holds that $\Delta_x = \Delta_y$, where $\Delta_x = \lor(M \setminus x) = \lor\{w \setminus x; w \in M\}$.

Theorem (Picantin 2001)

If *M* is a Δ -pure Garside monoid, Δ is its Garside element and *G* its group of fractions. Then the center of *M* (resp. of *G*) is the infinite cyclic submonoid (resp. subgroup) generated by Δ^e , where *e* is a natural number.

・ロン ・四 ・ ・ ヨン ・ ヨン

Δ -pure Garside monoids [Picantin 2001]

Definition of a Δ -pure Garside monoid

Let *M* be a Garside monoid. Then *M* is Δ -pure if for every x, y in *X*, it holds that $\Delta_x = \Delta_y$, where $\Delta_x = \lor(M \setminus x) = \lor\{w \setminus x; w \in M\}$.

Theorem (Picantin 2001)

If *M* is a Δ -pure Garside monoid, Δ is its Garside element and *G* its group of fractions. Then the center of *M* (resp. of *G*) is the infinite cyclic submonoid (resp. subgroup) generated by Δ^e , where *e* is a natural number.

Sketch of the proof of Theorem C

A correspondence between $w \setminus x$ and $g_w^{-1}(x)$ If $w \setminus x \neq 1$, then $w \setminus x = g_w^{-1}(x)$:

$$\begin{array}{c|c} h_1 & h_2 & & & h_k \\ \hline x & & & & g_1^{-1}(x) \\ g_x^{-1}(h_1) & g_x^{-1}(\cdot) & & & & g_2^{-1}g_1^{-1}(x) \\ \hline g_{x^{-1}}(\cdot) & & & & & & & \\ \end{array} \\ \end{array}$$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X,S) is nondegenerate iff f,g are bijective.
- (X,S) is braided iff fg = gf.
- (X, S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4) fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

• (X, S) is nondegenerate iff f, g are bijective.

• (X, S) is braided iff fg = gf.

• (X, S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4) fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

イロト 不得 トイヨト イヨト

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X, S) is nondegenerate iff f, g are bijective.
- (X,S) is braided iff fg = gf.
- (X, S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4) fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X, S) is nondegenerate iff f, g are bijective.
- (X,S) is braided iff fg = gf.

• (X,S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4) fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X, S) is nondegenerate iff f, g are bijective.
- (X,S) is braided iff fg = gf.
- (X, S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4) fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X, S) is nondegenerate iff f, g are bijective.
- (X, S) is braided iff fg = gf.
- (X, S) is involutive iff $g = f^{-1}$.

Example

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): fg = gf = (1, 3)(2, 4) but $fg \neq Id$. $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

Permutation solutions [Lyubashenko]

A permutation solution: S(x, y) = (g(y), f(x)), where $f, g : X \to X$.

- (X, S) is nondegenerate iff f, g are bijective.
- (X,S) is braided iff fg = gf.
- (X, S) is involutive iff $g = f^{-1}$.

Example

Let
$$X = \{x_1, x_2, x_3, x_4, x_5\}$$
 and let $f = (1, 4)(2, 3)$ and $g = (1, 2)(3, 4)$:
 $fg = gf = (1, 3)(2, 4)$ but $fg \neq Id$.
 $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$
 $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$
 $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

$$\bullet \ X' = X/ \equiv$$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

$$\bullet \ X' = X/ \equiv$$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

A (1) > A (2) > A

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

$$\bullet \ X' = X/ \equiv$$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

A (10) > A (10) > A (10)

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

• $X' = X/\equiv$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

A (10) × A (10) × A (10)

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

• $X' = X/\equiv$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

A (10) A (10) A (10)

An equivalence relation on the set X

 $x \equiv x'$ if and only if there is an integer k such that $(fg)^k(x) = x'$.

A new permutation solution

•
$$X' = X/\equiv$$

• $S': X' \times X' \to X' \times X'$ is defined by S'([x], [y]) = ([g(y)], [f(x)]), where [x] denotes the equivalence class of x modulo \equiv .

A (10) A (10) A (10)
A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $G = \operatorname{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X',S')

- $X' = \{[x_1], [x_2], [x_5]\}$, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$ (fg = gf = (1, 3)(2, 4)).
- $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$ $G = \text{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X',S')

- $X' = \{[x_1], [x_2], [x_5]\}$, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$ (fg = gf = (1, 3)(2, 4)).
- $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$ $G = \text{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X', S')

- $X' = \{[x_1], [x_2], [x_5]\}$, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$ (fg = gf = (1, 3)(2, 4)).
- $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

イロト 不得 トイヨト イヨト

A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$ $G = \text{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X', S')

•
$$X' = \{[x_1], [x_2], [x_5]\}$$
, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$
($fg = gf = (1, 3)(2, 4)$).

• $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

< 日 > < 同 > < 回 > < 回 > < □ > <

A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$ $G = \text{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X', S')

•
$$X' = \{[x_1], [x_2], [x_5]\}$$
, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$
($fg = gf = (1, 3)(2, 4)$).

• $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

イロト 不得 トイヨト イヨト

A non-involutive permutation solution (X, S)

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4): $x_1^2 = x_2x_4 = x_3^2 = x_4x_2$ $x_1x_2 = x_1x_4 = x_3x_4 = x_3x_2$ $x_2^2 = x_1x_3 = x_4^2 = x_3x_1$ $x_1x_5 = x_5x_4 = x_3x_5 = x_5x_2$ $x_2x_1 = x_2x_3 = x_4x_3 = x_4x_1$ $x_2x_5 = x_5x_3 = x_4x_5 = x_5x_1$ $G = \text{Gp}\langle x_1, x_2, x_5 \mid x_1^2 = x_2^2, x_1x_5 = x_5x_2, x_2x_5 = x_5x_1 \rangle.$

The corresponding (involutive) permutation solution (X', S')

•
$$X' = \{[x_1], [x_2], [x_5]\}$$
, with $x_1 \equiv x_3$ and $x_2 \equiv x_4$
 $(fg = gf = (1, 3)(2, 4)).$

• $G' = \operatorname{Gp}\langle [x_1], [x_2], [x_5] | [x_1]^2 = [x_2]^2, [x_1][x_5] = [x_5][x_2], [x_2][x_5] = [x_5][x_1]\rangle.$

Note that G and G' have the same presentation, up to a renaming of the generators.

Fabienne Chouraqui (Bar-Ilan)

イロト 不得 トイヨト イヨト

Sketch of the proof

- (*X*′, *S*′) is a well-defined non-degenerate, involutive and braided solution (a permutation solution).
- The structure group of (X', S') is isomorphic to G.

The relation \equiv imitates the cancellation

If $x \equiv x'$, then x and x' are equal in G.

Sketch of the proof

• (*X*′, *S*′) is a well-defined non-degenerate, involutive and braided solution (a permutation solution).

• The structure group of (X', S') is isomorphic to G.

The relation \equiv imitates the cancellation

If $x \equiv x'$, then x and x' are equal in G.

Sketch of the proof

- (*X*′, *S*′) is a well-defined non-degenerate, involutive and braided solution (a permutation solution).
- The structure group of (X', S') is isomorphic to G.

The relation \equiv imitates the cancellation If $x \equiv x'$, then x and x' are equal in G.

Sketch of the proof

- (*X*′, *S*′) is a well-defined non-degenerate, involutive and braided solution (a permutation solution).
- The structure group of (X', S') is isomorphic to G.

The relation \equiv imitates the cancellation

f $x \equiv x'$, then x and x' are equal in G.

Sketch of the proof

- (*X*′, *S*′) is a well-defined non-degenerate, involutive and braided solution (a permutation solution).
- The structure group of (X', S') is isomorphic to G.

The relation \equiv imitates the cancellation

If $x \equiv x'$, then x and x' are equal in G.

Thank you!!

イロト イヨト イヨト イヨト

Recognizing Garside monoids

A criteria for recognizing Garside monoids [P.Dehornoy 2002]

A monoid \boldsymbol{M} is Garside if and only if

- M is atomic.
- *M* is right cancellative.
- M satisfies the right cube condition on the set of atoms.
- *M* has a finite generating set *S* closed under complement, that is if $U, V \in S$ then the complement $U \setminus V$ is in *S*.

Proposition [P.Dehornoy 2002]

If M (atomic) satisfies the right cube condition on the set of atoms then

• M is left cancellative.

• Any two elements in *M* with a right common multiple admit a right lcm.

くぼう くヨン くヨン

Recognizing Garside monoids

A criteria for recognizing Garside monoids [P.Dehornoy 2002]

A monoid \boldsymbol{M} is Garside if and only if

- M is atomic.
- *M* is right cancellative.
- *M* satisfies the right cube condition on the set of atoms.
- *M* has a finite generating set *S* closed under complement, that is if $U, V \in S$ then the complement $U \setminus V$ is in *S*.

Proposition [P.Dehornoy 2002]

If M (atomic) satisfies the right cube condition on the set of atoms then

• *M* is left cancellative.

• Any two elements in *M* with a right common multiple admit a right lcm.