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The quantum Yang-Baxter equation - QYBE

Let R : V ⊗V → V ⊗V be a linear operator, where V is a vector space.
The QYBE is the equality R12R13R23 = R23R13R12 of linear
transformations on V ⊗ V ⊗ V , where Rij means R acting on the i−th
and j−th components.

A set-theoretical solution (X,S) of this equation [Drinfeld]
V is a vector space spanned by a set X.
R is the linear operator induced by a mapping
S : X ×X → X ×X.
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Properties of a solution (X,S)

Let X = {x1, ..., xn} and let S be defined in the following way:
S(i, j) = (gi(j), fj(i)), where fi, gi : X → X.
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Our object of study: The structure group of (X,S)

Assumption: (X,S) is a non-degenerate, involutive and braided
solution.

The structure group G of (X,S) [Etingof, Schedler, Soloviev]
The generators: the elements of X
The defining relations: xixj = xkxl whenever S(i, j) = (k, l)

There are exactly n(n−1)
2 relations.
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The example
Let X = {x1, x2, x3, x4, x5}.

The functions that define S
Let f1 = g1 = (1, 2, 3, 4)(5)
f2 = g2 = (1, 4, 3, 2)(5)
f3 = g3 = (1, 2, 3, 4)(5)
f4 = g4 = (1, 4, 3, 2)(5)
f5 = g5 = (1)(2)(3)(4)(5)

(X,S) is a non-degenerate, involutive and braided solution.

The defining relations in G and in M (the monoid with the same
pres.)

x2
1 = x2

2 x2
3 = x2

4

x1x2 = x3x4 x1x5 = x5x1

x1x3 = x4x2 x2x5 = x5x2

x2x4 = x3x1 x3x5 = x5x3

x2x1 = x4x3 x4x5 = x5x4
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Our results: Theorem A

Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Then G is Garside.
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Our results: Theorem A

Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Then G is Garside.

Sketch of the proof: Recognizing Garside monoids [P.Dehornoy
2002]
A monoid M is Garside if and only if

M is atomic.
M is right cancellative.
M satisfies the right cube condition on the set of atoms.
M has a finite generating set S closed under complement, that is
if U, V ∈ S then the complement U \ V is in S.
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Our results: Theorem A

Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Then G is Garside.

Sketch of the proof
Expressing xi \ xj in terms of the functions gi:
Let xi, xj be different elements in X.
Then xi \ xj = g−1

i (j).

In a dual way, xi\̃xj = f−1
j (i).
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Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Then G is Garside.

Sketch of the proof
Expressing xi \ xj in terms of the functions gi:
Let xi, xj be different elements in X.
Then xi \ xj = g−1

i (j).
The right cube condition is satisfied on X.
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Theorem A: The converse

Assume that Mon〈X | R〉 is a Garside monoid such that:
- the cardinality of R is n(n− 1)/2, where n is the cardinality of X.
- each side of a relation in R has length 2.
- if the word xixj appears in R, then it appears only once.
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Assume that Mon〈X | R〉 is a Garside monoid such that:
- the cardinality of R is n(n− 1)/2, where n is the cardinality of X.
- each side of a relation in R has length 2.
- if the word xixj appears in R, then it appears only once.
Then there exists a function S : X ×X → X ×X such that

(X,S) is a non-degenerate, involutive and braided set-theoretical
solution.
G = Gp〈X | R〉 is its structure group.
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Sketch of the proof

Definition of (X,S) non-degenerate and involutive
For each relation xixj = xkxl in R, define S(xi, xj) = (xk, xl).
(X,S) is non-degenerate, since Mon〈X | R〉 is Garside.
(X,S) is involutive, since each xixj in R appears only once.

Proof of (X,S) braided
Assume (X,S) is non-degenerate and involutive.
Then (X,S) is braided if and only if the right cube condition and the left
cube condition are satisfied on X.

(X,S) is braided⇔ gigj = ggi(j)gfj(i) and fjfi = ffj(i)fgi(j)

and fgfj(i)(k)gi(j) = gfgj(k)(i)fk(j), 1 ≤ i, j, k ≤ n.
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Our results: Theorem B

Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Assume the cardinality of X is n. Then

The right lcm of the generators is a Garside element.
The Garside element has length n.
The (co)homological dimension of the structure group G is n.
[P.Dehornoy, Y.Laffont 2003] [R.Charney, J.Meier, K.Whittlesey
2004] [J. McCammond]
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Sketch of the proof: Characterization of the simples (1)

Who are the simples?
A simple element s is a right lcm of some subset of generators Y .
The set of simples χ is equal to X∨ ∪ {1}.

Proof of χ = X
∨ ∪ {1}

χ = X
\,∨ [P.Dehornoy 2002]

Induction on the number of steps in the construction of χ:
I M \ x ⊆ X ∪ {1}.
I M \ (∨ixi) ⊆ X

∨ ∪ {1}.
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Sketch of the proof: Characterization of the simples (2)

What is the length of a simple?
The length of s is equal to |Y |.
The length of ∆ is equal to |X|.

Proof
Induction on |Y |

I The length of s is less or equal than |Y |.
I (∨ixi) \ xj 6= 1 (all the xi, xj are dft).
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Decomposability of a solution (X,S)

Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the QYBE.

Definition
(X,S) is decomposable if it is the union of two nonempty disjoint
non-degenerate invariant subsets. Otherwise, (X,S) is
indecomposable.

Theorem (Etingof,Schedler,Soloviev)
(X,S) is indecomposable if and only if G acts transitively on X,
where xi → g−1

i is a right action of G on X.
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The example

Let X = {x1, x2, x3, x4, x5} and S as before.

(X,S) is a decomposable solution
X = {x1, x2, x3, x4} ∪ {x5}.
{x1, x2, x3, x4} and {x5} are invariant subsets.

The defining relations in G and in M

x2
1 = x2

2 x2
3 = x2

4 (x5x5 = x5x5)
x1x2 = x3x4 x1x5 = x5x1

x1x3 = x4x2 x2x5 = x5x2

x2x4 = x3x1 x3x5 = x5x3

x2x1 = x4x3 x4x5 = x5x4
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Our results: Theorem C

Theorem
Let (X,S) be a non-degenerate, involutive and braided set-theoretical
solution of the quantum Yang-Baxter equation with structure group G.
Then
(X,S) is indecomposable if and only if G is ∆−pure Garside.

A consequence
If (X,S) is indecomposable then the center of G is cyclic, generated by
some exponent of ∆.

[Picantin 2001]
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∆−pure Garside monoids [Picantin 2001]

Definition of a ∆−pure Garside monoid
Let M be a Garside monoid. Then M is ∆−pure if for every x, y in X,
it holds that ∆x = ∆y,
where ∆x = ∨(M \ x) = ∨{w \ x;w ∈M}.

Theorem (Picantin 2001)
If M is a ∆−pure Garside monoid, ∆ is its Garside element and G its
group of fractions. Then the center of M (resp. of G) is the infinite
cyclic submonoid (resp. subgroup) generated by ∆e, where e is a
natural number.
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Sketch of the proof of Theorem C

A correspondence between w \ x and g−1
w (x)

If w \ x 6= 1, then w \ x = g−1
w (x):

g−1
1 (x)

h1 h2 hk

g−1
x (h1)

x

g−1∗ (·)

g−1
k · · · g−1

2 g−1
1 (x)

g−1∗∗ (·)

g−1
2 g−1

1 (x)
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Non-involutive permutation solutions are Garside (1)

Permutation solutions [Lyubashenko]
A permutation solution: S(x, y) = (g(y), f(x)), where f, g : X → X.

(X,S) is nondegenerate iff f, g are bijective.
(X,S) is braided iff fg = gf .
(X,S) is involutive iff g = f−1.

Example
Let X = {x1, x2, x3, x4, x5} and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4):
fg = gf = (1, 3)(2, 4) but fg 6= Id.

x2
1 = x2x4 = x2

3 = x4x2 x1x2 = x1x4 = x3x4 = x3x2

x2
2 = x1x3 = x2

4 = x3x1 x1x5 = x5x4 = x3x5 = x5x2

x2x1 = x2x3 = x4x3 = x4x1 x2x5 = x5x3 = x4x5 = x5x1
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Non-involutive permutation solutions are Garside (2)

An equivalence relation on the set X
x ≡ x′ if and only if there is an integer k such that (fg)k(x) = x′.

A new permutation solution
X ′ = X/ ≡
S′ : X ′ ×X ′ → X ′ ×X ′ is defined by S′([x], [y]) = ([g(y)], [f(x)]),
where [x] denotes the equivalence class of x modulo ≡.
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Example

A non-involutive permutation solution (X,S)

Let X = {x1, x2, x3, x4, x5} and let f = (1, 4)(2, 3) and g = (1, 2)(3, 4):
x2

1 = x2x4 = x2
3 = x4x2 x1x2 = x1x4 = x3x4 = x3x2

x2
2 = x1x3 = x2

4 = x3x1 x1x5 = x5x4 = x3x5 = x5x2

x2x1 = x2x3 = x4x3 = x4x1 x2x5 = x5x3 = x4x5 = x5x1

G = Gp〈x1, x2, x5 | x2
1 = x2

2, x1x5 = x5x2, x2x5 = x5x1〉.

The corresponding (involutive) permutation solution (X ′, S ′)

X ′ = {[x1], [x2], [x5]}, with x1 ≡ x3 and x2 ≡ x4

(fg = gf = (1, 3)(2, 4)).
G′ = Gp〈[x1], [x2], [x5] | [x1]2 = [x2]2, [x1][x5] = [x5][x2], [x2][x5] =
[x5][x1]〉.

Note that G and G′ have the same presentation, up to a renaming of
the generators.
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4 = x3x1 x1x5 = x5x4 = x3x5 = x5x2

x2x1 = x2x3 = x4x3 = x4x1 x2x5 = x5x3 = x4x5 = x5x1

G = Gp〈x1, x2, x5 | x2
1 = x2

2, x1x5 = x5x2, x2x5 = x5x1〉.

The corresponding (involutive) permutation solution (X ′, S ′)

X ′ = {[x1], [x2], [x5]}, with x1 ≡ x3 and x2 ≡ x4

(fg = gf = (1, 3)(2, 4)).
G′ = Gp〈[x1], [x2], [x5] | [x1]2 = [x2]2, [x1][x5] = [x5][x2], [x2][x5] =
[x5][x1]〉.

Note that G and G′ have the same presentation, up to a renaming of
the generators.
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Non-involutive permutation solutions are Garside (3)

Sketch of the proof
(X ′, S′) is a well-defined non-degenerate, involutive and braided
solution (a permutation solution).
The structure group of (X ′, S′) is isomorphic to G.

The relation ≡ imitates the cancellation
If x ≡ x′, then x and x′ are equal in G.
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Thank you!!
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Recognizing Garside monoids

A criteria for recognizing Garside monoids [P.Dehornoy 2002]
A monoid M is Garside if and only if

M is atomic.
M is right cancellative.
M satisfies the right cube condition on the set of atoms.
M has a finite generating set S closed under complement, that is
if U, V ∈ S then the complement U \ V is in S.

Proposition [P.Dehornoy 2002]
If M (atomic) satisfies the right cube condition on the set of atoms then

M is left cancellative.
Any two elements in M with a right common multiple admit a right
lcm.
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